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In biological olfactory systems, interaction of odorant molecules with olfactory receptor
proteins is driven by Brownian motion. As a result, at chemical equilibrium, the total
number of bound receptors changes randomly in time. Here we investigate the role of
this effect, known in physics as adsorption-desorption noise, in the discriminating abil-
ity of olfactory receptor neurons. For this purpose we developed a computer program,
which generates the adsorption-desorption process in a model neuron. We compared the
processes resulting from two different odorants with different affinities for the receptor
proteins. We took into account the threshold at which spikes are triggered and we cal-
culated the neuronal selectivity due to the differences in the threshold-crossing statistics
for the processes resulting from both odorants. We conclude that selectivity of the spik-
ing response of the whole neuron is much greater than that of its receptor proteins in
the near-threshold range of odorant concentrations.

Keywords: Olfactory Receptor Protein; Olfactory Receptor Neuron; Adsorption-
Desorption Noise; Selectivity.

1. Introduction

In biological sensory systems, the selectivity, i.e. discriminating ability, between
two signals builds up when these signals travel from the periphery to more central
sensory areas, and finally it attains its maximum value in the multi-modal brain
areas. This is also true for olfactory systems.1 The progressive improvement of the
discrimination of two stimuli along sensory pathways results ultimately from the
initial difference between these two signals at the stage of primary reception of
the stimuli. Therefore, it depends on the physical mechanisms, which underlie the
primary reception. In the case of olfactory receptor neurons (ORNs), the primary
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reception is due to the selective binding-releasing of odorant molecules to-from
olfactory receptor proteins (ORs).2–4 The ORs are located on the membrane of
filaments (cilia), which protrude from the tip of ORNs. Most ORNs express a single
olfactory receptor gene, so that all ORs on the ciliary surface of a given ORN are
identical. The formation of the odorant-receptor complex triggers the transduction
cascade, which provokes the opening of ion channels and the depolarization of
the ORN membrane.5,6 Depolarization to a critical potential level, the threshold,
causes the initiation of an action potential, which travels along the ORN axon to
the brain.

Thus, already in the ORN, several stages of processing of the olfactory sig-
nal involving many biochemical intermediates are present. Here we consider only
the first and last stages of the whole transduction process, i.e. the initial binding-
releasing of odor molecules by the OR and the final ORN firing. Our purpose is
to compare the discriminating ability at these two stages. We take into account
that the binding-releasing process is driven by Brownian motion and is, therefore,
random. Different odorants generate stochastic processes with different character-
istics, crossing the threshold at different times, and so generating different spike
trains. We developed a computer model of this stochastic process, which allows us
to determine the mean firing rates for different odorants and to compare the ORN
selectivity in terms of output firing rates with that of ORs.

In a previous paper7 one of us has shown analytically, that the discriminating
ability of a chemical sensor can be improved substantially in some parameter range
by means of proper processing of adsorption-desorption noise. Here we apply this
approach to an ORN model which is an extremely simplified version of an ORN. We
retain only the essential features of the biological ORN in order to study the problem
at hand in as simple a setting as possible. We show numerically with this model that
selectivity at the level of the ORN (expressed in terms of output firing rates) can
be much better than that of a single OR at near-threshold concentrations range. In
the present case the improvement in selectivity is exclusively due to differences in
the threshold crossing statistics for two odorants.

2. Definitions of Odorant Selectivity

2.1. Discriminating ability of a single receptor protein

From a chemical point of view, the odorant molecules interact with receptor proteins
according to an association-dissociation reaction, which is described by the following
scheme

L + R
k+�
k−

LR, (2.1)

where L, R, LR denote the ligand (odorant molecule), the receptor protein, and the
receptor-ligand binary complex, respectively.
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In order to introduce numerical measures of selectivity for a receptor protein
we denote the total number of receptor proteins in a single ORN as N . Let [R] and
[LR] denote surface concentration of free and occupied ORs, respectively. If the
ORN ciliary area is S, then N = ([R] + [LR])S, and the mean number of occupied
proteins is n = [LR]S. If an odorant L is applied at a certain concentration [L], the
mean relative amount s of proteins bound with odorant at chemical equilibrium is

s =
[LR]

[R] + [LR]
=

n

N
. (2.2)

If two odors, L1 and L2, are applied at the same concentration and it appears that
s1 �= s2, then we say that OR is able to discriminate between L1 and L2, and we
express the OR selectivity as

µ =
∣∣∣∣log

s1

s2

∣∣∣∣ . (2.3)

Note that definition (2.2), (2.3) is given for a whole population of ORs expressed
in a single neuron, and deals with mean number of occupied proteins. Since our
purpose is to compare the selectivity of a single OR to that of an ORN, it is
worthwhile to explain what this definition (2.2), (2.3) means for a single OR. For
this purpose one must take into account that receptor-odorant interactions are
driven by Brownian motion. At any moment in time, any OR can be either free,
or occupied with an odorant molecule, and this process is random. Therefore, one
can introduce the probability p for a single OR to be occupied at any moment in
time. It can be easily proven that p is equal to s as introduced in (2.2). Indeed, due
to the probabilistic nature of the binding-releasing process, at any moment of time
there is a probability, Pk, that exactly k ORs are occupied, and N − k are free.
Then the instantaneous relative amount of ORs bound with odorant is k

N . In order
to find the mean relative amount of ORs bound with odorant, which is s, one adds
all possible relative amounts multiplied by their probabilities. The probability Pk

can be found as the corresponding term in the binomial distribution:

Pk = Ck
N pk(1 − p)N−k, k = 0, 1, 2, . . . , N.

Now s can be found by averaging all possible relative concentrations from the set{
0
N , 1

N , 2
N , . . . , N

N

}
over the binomial distribution:

s =
∑

0≤k≤N

Pk · k

N

=
∑

0≤k≤N

Ck
Npk(1 − p)N−k · k

N

=
∑

0≤k≤N

N !
k! (N − k)!

pk(1 − p)N−k · k

N

=
∑

1≤k≤N

(N − 1)!
(k − 1)! (N − k)!

pk(1 − p)N−k
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= p
∑

1≤k≤N

(N − 1)!
(k − 1)! (N − k)!

pk−1(1 − p)N−k

= p
∑

0≤k≤N−1

(N − 1)!
k! (N − 1 − k)!

pk(1 − p)N−1−k

= p.

Thus, (2.3) can be rewritten as follows

µ = | log(p1/p2)|, (2.4)

which means that the selectivity of a single OR for two odorants can be defined
as the logarithm of the ratio of the probabilities that the OR is occupied by these
odorants.

It is helpful to discuss here our definition of selectivity of single OR given in
Eqs. (2.3) and (2.4). In chemistry, selectivity/specificity of association-dissociation
reaction, like (2.1), is normally expressed in terms of dissociation constant, Kd,
which is defined as

Kd =
[L][R]
[LR]

=
k−
k+

, (2.5)

where concentrations are taken at equilibrium. For two different odorants the dis-
sociation constants may differ. In this case the receptor can discriminate between
those odorants. The discriminating ability, µKd

, based on the Kd values might be
expressed as

µKd
= | log(Kd2/Kd1)|, (2.6)

where Kd1, Kd2 are the dissociation constants for the first and second odor, respec-
tively. From definitions (2.2) and (2.5) one obtains that the probability of an OR
to be bound with an odorant presented at concentration [L] is

p =
1

1 + Kd/[L]
. (2.7)

Thus, there is monotonic dependence between p and Kd, and therefore, definition of
µ either in terms of Kd, or p is equally suitable from a mathematical point of view.
Moreover, the µ value, as defined in (2.4), can be given in terms of the dissociation
constants as

µ =
∣∣∣∣log

1 + Kd2/c

1 + Kd1/c

∣∣∣∣ ,

where c is the concentration of any one of two ligands. But the equivalence of both
(2.4), and (2.6) is not complete from a biological point of view. First, the definition
of selectivity in terms of Kd, as given in (2.6), is concentration-independent, whereas
the observed selectivity in frogs is decreasing with increasing concentration.1 Sec-
ond, as it is clear from Eq. (2.5), in order to determine Kd one needs access to
three concentrations, namely, [R], [L] and [LR], whereas an ORN interacts with
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the external world through its ORs only, and can have access to the values [R] and
[LR], but not to [L]. Knowing [R] and [LR], it is possible to determine p as shown
in (2.2), therefore, we base our definition of selectivity on p, which is biologically
more relevant.

2.2. Discriminating ability of ORN

In order to define selectivity at the level of spike train generation, we must specify
how the number of odorant-receptor complexes is transformed into a spike rate. Here
we assume that the membrane depolarization at which a spike is fired is reached
when the number of bound ORs is equal to N0. When the number of bound ORs
is equal or higher than N0, the ORN fires with constant frequency, F0, and when
it is lower, it does not fire at all.

Consider first the deterministic case. Then the number of bound receptors, n, is

n = sN ≡ pN,

where s is defined in (2.2). So, for any odorant, the ORN will either fire with fixed
rate, or it will be silent. This gives rise to the expectation that ORN’s discrimination
is of a binary type, which means that the ORN behaves as a mere detection device,
responding by yes or no to the presence of odorants. For example, if n1 < N0 < n2,
for odorants L1 and L2, respectively, then L1 will not be detected and L2 will be
detected.

In the stochastic case, which is more realistic, the behavior of the system is very
different. Then the number, n(t), of ORs bound with odorant changes continuously
due to the stochastic nature of the binding-releasing process at any individual
OR. As a consequence of these random fluctuations in n(t), it happens that n(t)
is greater than threshold N0, even when the mean number of odorant-receptor
complexes, n, is less than N0. So, the ORN will fire spikes from time to time, these
firing events being randomly distributed in time. The ORN will fire irregularly in
accordance with the irregularities in the threshold crossing process. This gives rise
to a mean firing rate, F , which is defined as the mean number of spikes per unit
time, provided the observation period, T , is long enough to include many moments
of crossing threshold.

We consider this mean firing rate as the output signal of the ORN stimulated
with an odorant. The length of time, n(t) spends above the threshold depends on the
odorant applied, which causes difference in mean firing rates for different odorants,
hence the ORN selectivity. The role of fluctuations will be more pronounced for just
subthreshold stimuli, because such stimuli give rise to frequent threshold crossing
events.

Our purpose is to estimate the ORN selectivity for two odorants, which differ
in their affinity to the same OR, delivered at concentrations yielding subthreshold
activity. When fluctuations are taken into account, the neuron fires from time to
time for both stimuli. Denote F1 and F2 the mean firing rates for odorants L1
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and L2. Then, in analogy with (2.3), expecting F1 > F2, we define the selectivity
of the ORN as

ν = log
F1

F2
.

For determining values of F1 and F2 we use numerical simulation of the binding-
releasing stochastic process (2.1) as described in the next section. Then we can
compare the ORN selectivity to that of single OR.

3. Methods

3.1. Simulation of the stochastic process

3.1.1. Principle of the algorithm

For each value of concentration we determine the number of ORs bound with odor-
ants L1 and L2 at any moment of time, t, in the following way. At time t = 0 we
chose an initial state in which the number of occupied receptors is equal to the
mean number of occupied receptors for each odorant. Having the number of bound
receptors n(t) at moment t, we calculate this number at moment t+ dt, where dt is
the time step, by determining what happens with each OR during time interval dt.
If a receptor is occupied at moment t then the probabilistic meaning of rate con-
stants in scheme (2.1) tells us that at moment t+ dt it will be free with probability
k− ·dt, and it will stay occupied with probability 1−k− ·dt. If the receptor is free at
moment t, then it will be occupied at t+dt with probability k+ · c ·dt, and will stay
free with probability 1− k+ · c · dt, where c is the odorant concentration. The same
procedure is applied to the second odorant with k− changed to k′

−. In order to make
a decision about any occupied receptor the program generates a random number
ξ, distributed uniformly in the interval [0; 1]. If ξ ≤ k− · dt, then the corresponding
receptor becomes free, and it stays occupied if ξ > k− · dt. Similarly, if ξ generated
for a free OR satisfies the inequality ξ ≤ k+ · c · dt, then it becomes occupied, and
it stays free if ξ > k+ · c · dt. This allows one to generate trajectory n(t) on the
interval [0; tmax] for each odorant and concentration.

The method of calculation we chose is a straightforward consequence of the
probabilistic nature of rate constants. Special care was taken to insure the numer-
ical precision of the algorithm (see next subsection). Detailed descriptions of this
method and other more sophisticated and maybe faster methods, can be found
in Smith.8 The calculation time required to obtain a single trajectory for a single
odorant is about 15 hours with an Intel 2.7GHz processor. Most of the calculations
were performed in parallel with a multiprocessor Linux cluster.

3.1.2. Enhanced algorithm

The simulation algorithm becomes unacceptably imprecise if the numerical value
of any of the quantities

k− · dt, 1 − k− · dt, k+ · c · dt, 1 − k− · dt (3.1)
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becomes very small. This can be explained as follows. Standard pseudo-random
numbers generator produces at each call an integer number n ∈ {0, . . . , RAND_MAX},
where RAND_MAX is system-specific. In Borland C, RAND_MAX = 32767. The above-
mentioned ξ ∈ [0; 1] is then obtained as ξ = n/(RAND_MAX+ 1). As a result, ξ does
not spread over the whole continuum [0; 1], but takes values from the discrete set
{0, 1/(RAND_MAX+1), 2/(RAND_MAX+1), . . . , 1}, instead. If one of the quantities from
(3.1), say, a ≡ k+ ·c ·dt appears between adjacent discrete points m/(RAND_MAX+1)
and (m + 1)/(RAND_MAX + 1), then the probability of a free receptor to become
occupied during time dt will be equal to m/(RAND_MAX + 1) instead of a. Since
â ≡ [a · (RAND_MAX+1)]/(RAND_MAX+1) = m/(RAND_MAX+1), where [x] denotes the
integral part of x, then one obtains the relative deviation a−â

a of probability a. The
upper bound for a − â is 1/(RAND_MAX+ 1). Thus the deviation may be ignored if

a � 1/(RAND_MAX+ 1).

Unfortunately, not all possible values of quantities in (3.1) satisfy the above
criterion. Example, with the values of tables 1-2 one has a = k+ · cmin · dt =
7.11 · 10−8, whereas 1/(RAND_MAX+ 1) = 3.05 · 10−5 for RAND_MAX specified above.
Since simulations were partially performed in the Borland C system with that small
RAND_MAX value, an enhanced algorithm was used, which is explained below for
quantity a, corresponding to the probability that a free receptor becomes occupied
during time step dt.

Instead of considering quantity a, we consider A = a · RAND_MAX. In order to
determine at a single time step the destiny of a free OR, a random integer number n

between 0 and RAND_MAX is drawn. If n < [A], then OR becomes occupied (outcome
O3 in Fig. 1, right). If n > [A], then OR remains free (outcome O1). If n = [A],
outcome O2, then the destiny is still not determined. In this case consider value
B ≡ (A − [A]) · (RAND_MAX+ 1), and get new a random number n′ between 0 and
RAND_MAX. If n′ < [B], outcome O23, then OR becomes occupied. If n′ > [B],
outcome O21, then OR remains free. If n′ = [B], outcome O22, then the procedure
of magnification can be repeated with C ≡ (B − [B]) · (RAND_MAX+ 1), instead of
B, and so on. In this calculation we stop at B, treating outcome O22 similarly to
O23. The possible deviation from correct transition probabilities when using this

Fig. 1. Structure of single trial in plain (left), and enhanced (right) Monte Carlo method.
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method for generating stochastic trajectories can be estimated. The probabilities
of outcomes O1, O2, O3 are (RAND_MAX− [A])/(RAND_MAX+ 1), 1/(RAND_MAX+ 1),
[A]/(RAND_MAX + 1), respectively. If single trial is stopped at this stage (Fig. 1,
left), then outcomes O1 and O3 can be treated as “OR remains free” and “OR
becomes occupied”, respectively, while O2 cannot be treated unequivocally due to
large single bin width if trials are made in accordance with the scheme in Fig. 1,
left. An additional toss for outcome O2 results in outcomes O21, O22, O23 with
probabilities (RAND_MAX− [B])/(RAND_MAX+1), 1/(RAND_MAX+1), [B]/(RAND_MAX+
1), respectively. Now we treat outcomes O1 and O21 as “OR remains free”, and O3

and O23 as “OR becomes occupied”. The corresponding probability is as follows

p(O3 or O23) = p(O3) + 1/(RAND MAX+ 1) · [B]/(RAND MAX+ 1).

After substituting B instead of [B] one obtains

p(O3 or O23) = a.

The latter expression for p(O3 or O23) differs from the former one by (B − [B])/
(RAND_MAX+ 1)2, hence simulation in accordance with the scheme of Fig. 1, right,
gives transition probabilities, which deviate from the desired ones not more than by

1/(RAND_MAX+ 1)2.

Examples of trajectories are shown in Fig. 2.

3.2. Processing of calculated trajectories

In our paradigm, the ORN fires with constant rate F0 when the number of bound
ORs is above N0. If the trajectory spends periods of time above the threshold,

 230
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Fig. 2. Example of two trajectories calculated for two different odorants L1 (continuous line)
and L2 (dotted line). Concentration c = 3.78028e · 10−9 M for both odorants. Compare this with
experimental curve in Miyanaga et al.9 Fig. 3c.
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Table 1. Values of constants characterizing model ORN and odors.

Number of ORs per ORN, N 2 500 000
Threshold number of activated ORs per ORN, N0 240, 250 or 260
Constant firing rate, when above threshold, F0 7Hz
Rate constants, k+ 209 000 s−1 M−1

k− 7.9 s−1

k′
− 8.295 s−1

Table 2. Numerical values of parameters used for calculations.

Range of concentrations, cmin 3.40225 · 10−9 M
cmax 4.15831 · 10−9 M
Concentration increment, ∆c 3.78028 · 10−11 M
Simulation time, tmax 26.4 s
Time step, dt 0.0001 s

we calculate the total amount of time, T1 and T2, it spends there for each of two
odorants during the simulation period [0; tmax]. Having T1 and T2, we estimate the
number of spikes, produced during the simulation period as F0T1 and F0T2, which
gives for selectivity ν at a given concentration

ν = log
T1

T2
. (3.2)

The mean firing rate F is calculated as

Fi = F0 · Ti/tmax, i = 1, 2,

where F0 and tmax are given in Tables 1 and 2, respectively.

4. Results

We model the neuron as a set of N identical ORs, which bind odorant molecules
independently (see Fig. 3). Two odorants, L1 and L2 with different affinities for
the OR are considered. They are characterized by their binding rate k+, which is
the same for both odorants, and their releasing rate k− for L1 and k′

− for L2, with
k′
− > k−, which means that L2 has the lowest affinity for the OR. The numerical

values of all parameters, including threshold N0 above which the neuron fires with
constant frequency F0, are given in Table 1. The values of N , k+ and k− are those
for the moth ORN responsive to the sexual pheromone as given by Kaissling.10,11

The corresponding Kd are 37.8µM for L1 and 39.7µM for L2.
As stated in the previous section, the effects due to randomness of the binding-

releasing process should be more pronounced if the mean number of bound receptors
is just subthreshold. For this reason we studied a range of odorant concentrations
in this region. We chose the left end of the concentration range below the threshold
value for the more affine odorant, and its right end above the threshold. The range
chosen spans from subthreshold to suprathreshold values also for the less affine

J.
 B

io
l. 

Sy
st

. 2
00

8.
16

:5
31

-5
45

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 Y
O

R
K

 @
 B

IN
G

H
A

M
T

O
N

 o
n 

01
/2

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 13, 2008 14:29 WSPC/129-JBS 00268

540 Vidybida et al.

Fig. 3. Definition of ORN selectivity. It is assumed that the neuron fires at a constant rate when
threshold is achieved. The mean firing rate depends on the temporal properties of the threshold
crossing process, which depends on the odorant presented.

odor. Twenty one equidistant concentration values in the range chosen were used
for simulation, from cmin to cmax (see Table 2).

First, we calculated the stochastic trajectories for each odorant interacting with
the receptors characterized by the parameters given in Table 1 for 21 different
concentrations as given in Table 2.

Second, the trajectories obtained (see Fig. 2) were processed as described in the
Methods section. The firing rates for increasing odorant concentrations were deter-
mined. Figure 4 shows that the firing rate increases with concentration according
to a sigmoid curve.
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Fig. 4. Mean firing rate of an ORN versus concentration for three different threshold values N0

for more (left) and less (right) affine odor. Curves from top to bottom correspond to N0 = 240,
250, 260. Three vertical bars at the X-axis denote concentration values at which the mean number
of bound receptors equal 240, 250 and 260. Compare this with Fig. 5.
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Fig. 5. Probability that an OR is occupied with first (upper curve) and second odorant versus
concentration, calculated as in Eqs. (2.2) or (2.7).

This contrasts with the probability of a single OR to be bound to the odorant
(see Fig. 5). The sigmoid character of curves in Fig. 4 is a new property, which
emerges due to the threshold-type reaction of ORN, and to statistical properties of
the threshold crossing process.

For a very small concentration (on the left of the range studied) the firing rate
tends to zero. For a concentration on the right end of the range studied (or greater),
the firing rate tends to asymptote F0. As might be expected, the dose-response
curves are shifted to the right when the threshold is increased.

Third, the selectivity for the OR µ (2.4) and for the ORN ν (3.2) were cal-
culated and compared for different thresholds. As result, we obtained selectivity
values versus concentrations c of odorants for various threshold values N0 from
240 to 260 (Fig. 6). In addition, we calculated neuronal selectivity values versus

0

 0.5

1

 1.5

2

 2.5

3

 3.6e-09  3.8e-09  4e-09

se
le

ct
iv

ity

concentration, M

0

 0.5

1

 1.5

2

 2.5

 240  245  250  255  260

se
le

ct
iv

ity

threshold

(a) (b)

Fig. 6. (a) Selectivity of an ORN (3 upper curves) and its membrane-bound ORs (lower straight
line) versus concentration. Curves from bottom to top correspond to thresholds N0 = 260, 250,
240, respectively. The single primary receptor selectivity [see Eqs. (2.4), (2.7)] is equal to 0.0487859
and 0.048785 at left and right ends, respectively. (b) Selectivity of ORN versus threshold value
N0 for three different concentrations. Curves from top to bottom correspond to concentrations
3.51566 · 10−9 M, 3.78028 · 10−9 M, 4.0449 · 10−9 M, respectively.
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threshold number for three different concentrations. Figure 6a shows that, in the
range of concentrations studied, the ORN selectivity ν is much higher than the OR
selectivity µ. For example, at concentration c = 10−4 M and threshold N0 = 250,
the ORN selectivity ν is 16.5 times larger than the OR selectivity µ. Contrary to µ,
which is almost independent of concentration, ν increases when the concentration
decreases. When the firing rate tends to the asymptote F0, ν tends to µ. Figure 6a
shows also that ν increases when the threshold is increased.

Fourth, the latter effect is studied in more details in Fig. 6b. It shows that the
increase in selectivity with increasing threshold occurs at all odorant concentrations
in the range studied.

The dependencies obtained suggest that the selectivity of a chemoreceptor neu-
ron can be much higher than that of its receptor proteins. Additionally, it is observed
that the ORN selectivity increases, if the odorant concentration decreases, and vice
versa. Selectivity improvement is more pronounced at low concentrations. On the
other hand, at low concentrations, the threshold is crossed rarely and the firing rate
becomes low. At very low concentrations the spike rate may be too low to have a
physiological meaning.

5. Discussion

Biological systems operate at temperatures that are well above the absolute zero,
therefore thermal fluctuations are inevitable in any biological process. If the pro-
cess involves association-dissociation of molecules, then the fluctuations bring about
random variations in the number of associated molecules. The influence of these
variations on chemotaxis has recently been studied experimentally in single-cell
organisms.9 Chemical senses of multi-cell organisms as well involve odorant bind-
ing of ligands to specialized ORs on the ORN surface. These ORNs are thus sub-
jected to random variations in the number of ligands during primary reception.
The statistical nature of the binding-releasing of odorants can be observed directly
in electrophysiological recordings at very low stimulus intensity (see Minor and
Kaissling12). It has been suggested that the subthreshold fluctuations of the mem-
brane potential they induce lower the sensory threshold and so extend the dynamic
range of responses towards low stimulus concentrations.13

In the present work we performed numerical simulations of the odorant binding-
releasing stochastic process in order to investigate the influence on neuronal selec-
tivity of the random nature of binding-releasing processes. We take into account
these properties by means of direct numerical simulations. Our conclusion is that
the selectivity of ORNs, as defined in Sec. 2.1, can be significantly higher than that
of its ORs. This conclusion is based on a simplified neuronal model. It ignores most
of the detailed processes involved in olfactory transduction, such as odorant bind-
ing proteins (OBPs), G-proteins, effector enzymes, second messengers, calcium and
chloride channels, feedback reactions etc. However, it is not necessary to consider
the overall complexity of transduction to analyze its most basic properties. For
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example, as far as dose-response curves are concerned, it can be shown14 that the
most important step in olfactory transduction is the first one the receptor-ligand
interaction. The subsequent steps merely amplify this initial interaction. This exam-
ple illustrates why a simplified model is adequate to analyze the influence of random
fluctuations on selectivity.

Further research of this effect should check its role in the framework of a more
realistic model of the early steps of transduction, like in Rospars et al.15 The present
work specifies the key parameters that need to be taken into account in such models
and in physiological experiments. It is, thus, a useful guide when tackling with more
intricate situations. From this point of view it is worth mentioning some restrictions
of the approach followed which can be solved in more complex models.

First, in our present model, selectivity improvement occurs only in a near-
threshold concentration range, it disappears above this range, and, below it, the
mean firing rate becomes too small to be physiologically significant. This results
from simplifications made in the model of ORN, especially the fact that the firing
rate does not depend on how much above threshold the number of bound ORs
is, which is not the case in real ORNs. Introducing here a functional dependence
similar to that proposed to describe frog16 and rat14 ORN responses could widen
the range of concentrations where the effect takes place and make the selectivity
improvement more pronounced.

Second, our approach does not include adaptation processes. Adaptation is
present in ORNs and takes several forms depending on the nature of the stimuli
(brief pulse, long pulse or brief repetitive pulses17). Depending on the mechanism
involved the sensory threshold may or may not be modified by adaptation. If the
threshold is modified, the selectivity enhancement might be less pronounced in an
adapted ORN. Alternatively, some ORN types might be tuned to have maximum
selectivity enhancement in their adapted state. These developments are outside the
scope of the present paper. They call for less simplified models which are still in
development.18,19

Third, the mechanism proposed here for enhancing the discrimination between
odorants is only one among many. Other mechanisms in ORNs could play a role,
especially those involving cooperativity. For example, OR clustering has been shown
to improve concentration-response relationship, as described by others,20,21 and
other proteins in the transduction cascade might be involved as well. Another exam-
ple is provided by the voltage-gated sodium channels in the axon action-potential
generator whose cooperation produces the voltage firing threshold. This thresh-
old, which can be expressed in terms of the number of ORs bound with ligand,
as explained in Sec. 2.2 above, determines in turn the smallest stimulus intensity
that can be signaled to secondary neurons in the antennal lobes (AL) of insects
and olfactory bulbs (OB) of vertebrates. However, the interactions taking place
in the neural network of the AL/OB, provides a higher level form of cooperation
between ORNs. It is likely the major mechanism involved in odor discrimination
(e.g. Linster et al.22).
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16. Rospars J-P, Lánský P, Duchamp A, Duchamp-Viret P, Relation between stimulus
and response in frog olfactory receptor neurons in vivo, Eur J Neurosci 18:1135–1154,
2003.

J.
 B

io
l. 

Sy
st

. 2
00

8.
16

:5
31

-5
45

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 Y
O

R
K

 @
 B

IN
G

H
A

M
T

O
N

 o
n 

01
/2

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 13, 2008 14:29 WSPC/129-JBS 00268

Selectivity Improvement in an Olfactory Receptor Neuron Model 545

17. Zufall F, Leinders-Zufall T, The cellular and molecular basis of odor adaptation, Chem
Sense 25:473–481, 2000.

18. Dougherty DP, Wright GA, Yew AC, Computational model of the cAMP-mediated
sensory response and calcium-dependent adaptation in vertebrate olfactory receptor
neurons, Proc Natl Acad Sci USA 102:10415–10420, 2005.

19. Reidl J, Borowski P, Sensse A, Starke J, Zapotocky M, Eiswirth M, Model of Ca
oscillations due to negative feedback in olfactory cilia, Biophys J 90:1147–1155, 2006.

20. Bray D, Lay S, Computer-based analysis of the binding steps in protein complex
formation, Proc Natl Acad Sci USA 94:13493–13498, 1997.

21. Bray D, Levin VD, Morton-Firth CJ, Receptor clustering as a cellular mechanism to
control sensitivity, Nature 393:85–88, 1998.

22. Linster C, Sachse S, Galizia CG, Computational modeling suggests that response
properties rather than spatial position determine connectivity between olfactory
glomeruli, J Neurophysiol 93:3410–3417, 2005.

J.
 B

io
l. 

Sy
st

. 2
00

8.
16

:5
31

-5
45

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 Y
O

R
K

 @
 B

IN
G

H
A

M
T

O
N

 o
n 

01
/2

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.




