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A possible mechanism that provides increased selectivity of olfactory bulb projection neurons, as 

compared to that of the primary olfactory receptor neurons, has been proposed. The mechanism operates 

at low concentrations of the odor molecules, when the lateral inhibition mechanism becomes inefficient. 

The mechanism proposed is based on a threshold-type reaction to the stimuli received by a projection 

neuron from a few receptor neurons, the stochastic nature of these stimuli, and the existence of electrical 

leakage in the projection neurons. The mechanism operates at the level of the single individual projection 

neuron and does not require the involvement of other bulbar neurons. 
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INTRODUCTION

Primary reception of odors is provided by 

olfactory receptor neurons (ORNs). The ORNs are 

synaptically connected with mitral and tufted cells 

of the olfactory bulb. The latter cells, known as 

bulbar projection neurons (PNs), convey olfactory 

signals to upper brain structures (finally, to the 

olfactory cortex).

Communication between ORNs and PNs is of 

convergent nature: many ORNs synapse onto a 

single PN. The convergence degree depends on the 

animal species and can be fairly large [1]. This is 

one of the factors providing high sensitivity to odors 

[2–4].

It is known that the discriminating ability of PNs 

is better than that of ORNs [5, 6]. A general point 

of view is that the better selectivity of PN is due to 

the mechanism of lateral inhibition [5, 7, 8]. Such 

a mechanism has been well studied in the visual 

system, where it increases the contrast between 

domains of the visual field [9–11]. In the olfactory 

system, lateral inhibition is organized via granular 

cells, which are stimulated by mitral cells and 

inhibit other PNs [12, 13]. As a result, the system 

of PNs functions similarly to the “winner takes all” 

principle, and this can be the reason of PNs having 

better selectivity than ORNs.

In recent studies [14], it was realized that 

lateral inhibition in the olfactory bulb, unlike that 

in the retina, is organized nontopographically. 

Such a feature was discussed earlier [8]. If so, is 

lateral inhibition able to ensure the same “contrast 

enhancement” in olfaction as it does in vision? This 

question has been discussed [15], but a final answer 

to this question requires additional experimental 

studies.

Lateral inhibition of PNs happens due to the 

activity of inhibitory bulbar neurons. The recruitment 

of inhibitory neurons is necessary because there 

is a possibility of high odor concentrations, 

and such recruitment decreases with decreasing 

concentrations [5]. Therefore, the efficacy of lateral 

inhibition in improving the selectivity of PNs should 

decrease for low concentrations. Such a decrease 

has been observed [5].

In our paper, another mechanism for the 

selectivity gain in PNs is proposed. It is independent 

of lateral inhibition and could be very efficient at 

low odor concentrations. This mechanism can work 

for individual PNs without the involvement of other 

bulbar cells. The prerequisites of this mechanism are 

as follows: 

(i) existence of a leakage in the PN membrane, 

(ii) a threshold-type response of PNs to the 

respective stimuli, and 
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(iii) the random nature of stimuli obtained by a 

PN from ORNs. 

A similar mechanism is possible for both 

individual ORNs [17, 18] and “electronic nose” 

sensors based on adsorption-desorption of odors 

[19].

In this theoretical paper, a PN model is used, 

which has been proposed earlier [20]. The activity 

of a single ORN is described as a Poisson process. 

The communication between a set of a few ORNs 

and the corresponding PN is characterized by the 

convergence degree N and the minimal number of 

input spikes N
0
 required for triggering  that PN 

(firing threshold). For this system, the coefficient 

of selectivity gain  is defined, which shows how 

much the PN selectivity is improved, as compared 

to that of the ORN. The exact expression for  as a 

function of the system parameters has been found. 

The expression output is analyzed for different 

parameters. In particular, it is observed that, 

for physiologically relevant parameters, the PN 

selectivity can be several tens times better than that 

of ORNs due to the mechanism proposed.

METHODS

Neuronal Model with a Random Living Time of 

the Obtained Excitatory Impulses. A model of PN 

that was proposed earlier [20] has been used. In this 

model, an effect of the membrane leakage occurs 

during a random decay of individual input impulses. 

Before the decay, each impulse is stored unchanged, 

and it disappears at the decay moment. Thus, there 

is a finite set of possible values of depolarization. 

The random living time of a single obtained impulse 

is characterized by an exponential distribution. 

Therefore, the decay of total depolarization is 

exponential (as it should be), but the depolarization 

decreases by finite jumps with a height equal to the 

height of an input impulse. If the impulse height 

is small, as compared with the firing threshold, 

then this model describes the membrane leakage 

satisfactorily.

Mathematically, the model can be formulated 

as follows. The resting state of a neuron is 

characterized by zero depolarization, V = 0. When 

obtaining an input impulse, the depolarization 

advances by h, the height of the input impulse. The 

h is analogous to the EPSP amplitude. Between the 

moments of obtaining two consecutive impulses, the 

depolarization does not change, V(t) = const, if no 

decay happens. Therefore, at any time moment, the 

depolarization takes a value from the discrete set, 

. The neuron is characterized by 

a firing threshold V
0
; if depolarization is greater than 

V
0
, then the neuron generates an output spike and 

appears in its resting state. The triggering condition 

formulated in terms of V
0
 can be reformulated in 

terms of the minimal number N
0 

of input spikes 

capable of triggering: 

where brackets [x] denote the integer part of x.

Until now, the model described corresponds to 

the model known as a “perfect integrator” [21]. It 

has been additionally expected [20] that any impulse 

obtained by the neuron has a random living time. 

The living time is exponentially distributed with 

the constant µ. This means that any impulse may 

disappear during a small interval, [t; t + dt], with 

the probability µ dt. If the neuron keeps k excitatory 

impulses at moment t, the depolarization is equal to 

V(t) = kh. Let us believe that stimulation is absent 

after t. During a short interval, [t; t + dt], any of 

the k impulses can decay/disappear. Let us expect 

that the impulses decay independently. Then the 

probability that depolarization decreases by h during 

dt is kµdt. Thus, at the end of the interval [t; t + dt], 

the depolarization is equal to V(t + dt) = (k – 1)h 

with the probability kµdt, and to  

with the probability 1 – kµdt. Averaging over 

many realizations, we obtain the mean value of 

depolarization: 

It is clear from the latter considerations that, on 

average, the depolarization decreases exponentially, 

as it should be for electrical leakage, and the 

constant µ has a physical meaning of the inverse 

membrane relaxation time, ��  � ��2. This model 

could be named, according to its authors, as the 

KKPT model.

A Projection Neuron that is Stimulated 

by Many ORNs. The communication scheme 

between ORNs and a PN is shown in Fig. 1. It is 

not necessary to take into consideration additional 

cells, in particular the granular ones, and additional 

dendrites possibly ending in other glomeruli or 

nearby, for investigating of how the randomness, 

threshold, and leakage influence the PN selectivity.
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Let N denote the number of ORNs converging 

onto a single PN. When stimulated with an olfactory 

stimulus (odor), each ORN generates a random 

train of spikes contributing to the compound 

stimulus applied to the PN. Taking into account the 

specificities of primary odor reception through the 

receptor proteins, it is natural to consider the ORN 

output series as a Poisson stream with the intensity 

�
in
, where the subscript “in” indicates that the spike 

train represents an input to the PN from a single 

ORN. The integral input effect coming to the PN will 

be a Poisson stream with the intensity �
tot 
 �1��

in
.

Selectivity Definition. In order to compare the 

selectivity of an individual ORN with that of the 

PN, it is necessary to formulate an exact quantitative 

definition of those selectivities. In order to give such 

a definition, let us consider a situation where an 

ORN is exposed in two separate experiments to two 

different olfactory stimuli, O and O', having same 

odor concentration. This will result in spiking of the 

ORN with the intensities �
in

 and �

in

, respectively. 

Let us assume that the odor O' possesses a stronger 

affinity to the ORN receptor proteins than O does. 

Then, �

in
 > �

in
, and  

ZKHUH�û�
in

 > 0.The selectivity (or discriminating 

ability) S between stimuli O and O' affecting the 

ORN can be defined as the following quotient: 

 (1)

ORNs of this type converge on the PN, and the 

latter will generate more output spikes per time unit 

for the action of odor O': 

.

The PN ability  to discriminate between O and 

O' can be defined in a similar manner: 

 (2)

The selectivity gain  can now b e defined as 

follows: 

Taking into account expressions (1) and (2), the 

latter can be represented as a derivative: 

, (3)

where  can be called the coefficie nt of selectivity 

gain. The selectivity improvement takes place if 

.

Output Intensity. It is clear from definition (3) 

that, in order to determine , one has to find  as 

a function of . Instead of the output intensity , 

it is possible to use the mean output inter-spike 

interval . Then 

 (4)

In order to find T
o
, let us consider the PN  as 

a system with N
0
 possible states labeled with 

numbers k = 0,1,2,...,N
0
 – 1. A state with number k 

corresponds to the situation when the PN contains  k 

input impulses (see Fig. 2). 

Systems of this type are known in the theory of 

stochastic processes as those with a drain at the 

right end. A theory has been developed, which gives 

the mean triggering waiting time for a system of 

this kind in terms of the transition rates and other 

parameters. One could use, e.g., equation (1.69) 

in [23]. The straightforward application of this 

equation with the transition rates specified in Fig. 2 

results in the following expression for T
o
: 

       (5)

F i g. 1.  Scheme of communication between ORNs and a PN. Up 
to several thousands ORNs [22] (the concrete number depends 
on the animal species) can converge through a single glomerulus 
onto a single PN. All those ORNs express the same receptor 
protein.
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T a b l e 1. Experimental Values for the Parameters; Sources are 

Indicated in Brackets

Parameters Characteristics

Threshold height ORN spike PN membrane

Depolarization
EPSP 

amplitude
Frequency

relaxation 

time,

V
0
, mV K���9 �

in
, msec–1

2, msec

Limits 

5-12 [13, 25] 30–665; 10–3 [26] 90 [27]

the mean is 

131 [28]

T a b l e 2. Results of Numerical Calculations; �
o
  and  Are 

Calculated Using Eqs. (4) and (7), Respectively; N
0
 Is Chosen 

in Accordance with the Data of Table 1

Threshold N
0

Output frequency �
o
,  sec–1

300 10.3 1.78

400 5.3 3.15

500 0.67 30.3

F i g. 3. Dependences of  (1) and �
o
 (2), sec-1, on the �

in
, sec-1, for the threshold N

0
 = 300; N = 5000, and  msec;   is dimen-

sionless.

F i g. 4. Dependences of  (1) and �
o
 (2), sec-1, on the threshold N

0
 for �

in 
= 0.5sec–1.
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DISCUSSION

A higher selectivity of the secondary olfactory 

sensory neurons, as compared to the primary ones, 

has been discussed many times [4, 5, 16, 29, 30]. 

Lateral inhibition has been proposed as a sole 

mechanism explaining the higher selectivity of PNs 

[5, 7, 12]. This mechanism seems to be inefficient at 

low odor concentrations [5].

In our paper, a different mechanism has been 

proposed, which is based exclusively on the 

stochastic nature of the stimuli received by PNs, on 

the threshold-type reaction to the above stimuli, and 

on the electrical leakage through the PN membrane. 
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This mechanism does not depend on lateral 

inhibition and is capable of functioning at low 

odor concent rations. A coefficient of the selectivity 

gain, , is defined in order to get the quantitative 

description. Possible values of  for physiologically 

real parameters are obtained. The coefficient of 

selectivity gain is characterized by the following. 

There is no selectivity gain if the secondary neuron 

is triggered by each single input impulse ( ). 

This is, however, not the case for PNs. The 

selectivity gain increases with increasing triggering 

threshold ( ). Also, there is no gain if the electrical 

leakage is absent. Similar situation takes place if 

input stimulation is very intense, when, despite the 

leakage, every set of N
0
 input impulses triggers the 

secondary neuron. For a very low intensity of input 

stimulation (low odor concentration),  approaches 

its maximal value ( ). Under moderate odor 

concentrations, . For the parameters 

taken from a physiological range, the mechanism 

proposed can provide several tens of times higher 

selectivity of a secondary neuron, as compared to 

that of the primary ones.

Earlier, a concept has been proposed that the 

convergent nature of communication between ORNs 

and PN also might improve the PN selectivity [3]. 

To my knowledge, no physical mechanism for such 

improvement has been proposed. The mechanism 

proposed in this paper also is not based on the 

convergence principle. Indeed, as can be seen 

from Eqs. (7) and (8), the degree of convergence 

 is used only for calculation of the intensity of 

compound stimulation from the set of ORNs, 

�
tot 
 �1� �

in
. The same value of �

tot
 can be ensured 

either by a large number of low-activity ORNs or by 

a small number of high-active units. In both cases, 

the same selectivity gain will be obtained provided 

that other parameters are the same. Here, it should 

be mentioned that spontaneous activity of ORNs 

has been excluded from consideration. This activity 

can worsen the detection of weak olfactory stimuli 

[31]. At the same time, due to the high degree of 

convergence, uncorrelated spontaneous noise can 

be averaged out [3, 8]. Therefore, the convergence 

may indirectly play some role in the mechanism 

proposed.

To finish our discussion on ORN spontaneous 

activity, it should be mentioned that this activity can 

be rather low [26, 32], while the time required for 

odor perception can be quite short [33] (actually, 

much shorter than the mean interspike interval in 

spontaneous activity). Thus, it may happen that the 

influence of spontaneous activity is minimal during 

the odor perception time.

An interesting feature to discuss is the depen-

dence of selectivity on the odor concentration. 

With increase in concentration, the ORN spiking 

frequency �
in

 increases as well. In this case, 

the proposed mechanism predicts a decrease in 

the PN selectivity. This is in accordance with 

some experimental observations [26]. In other 

experiments, it was observed that the selectivity 

increased with increase in odor concentration 

[16], or it was independent of the concentration 

[29]. This contradiction could be resolved if the 

odor concentration applied by Tan et al. [26] was 

lower than that in other studies [4, 16]. Indeed, a 

progressive recruitment of bulbar neurons with 

increasing the odor concentration was also observed 

in the latter experiments. In this process, the number 

of active inhibitory neurons grows faster than that 

of excitatory ones [5, 32]. This is a prerequisite 

for lateral inhibition. At higher concentrations, 

the latter could be more efficient in improving 

the PN selectivity. This explains the selectivity 

increase with increasing odor concentrations 

observed by Duchamp-Viret et al. [16]. At the 

lowest concentrations, the proportion of inhibitory 

neurons among all active units in the olfactory bulb 

is considerably lower than at high concentrations, 

or inhibitory activity is absent at all [5]. In this 

case, lateral inhibition does not work, whereas the 

mechanism discussed here predicts a selectivity 

improvement with decreasing concentrations.

It should be mentioned that the possible mecha-

nism for the selectivity gain proposed here is 

based on theoretical analyses of a considerably 

simplified pattern. In particular, the model used 

to describe a projection neuron corresponds to 

the widely used leaky integrate-and-fire model 

only “on average.” This model was proposed 

earlier [20]. It has been used here because it is 

possible to obtain exact mathematical expressions 

character iz ing s tochast ic  t r igger ing process 

when using this model. Such a model can be a 

suitable approximation of the leaky integrate-

and-fire model when the height (amplitude) of an 

individual EPSP is rather small.

Further, a processing of input spikes might happen 

at the level of the dendritic tree [34, 35]. This fact 

can be taken into account in the current approach, 

but it requires a sizable extension, and this can be 

done in further publications. Another simplification 

is that individual ORNs are considered to be 
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identical, whereas they can differ from each other in 

their sensitivity and response rate [36].

Additionally, when estimating ORN activity 

(firing rate ), one should take into account that 

communication from an ORN to the PN can be 

inhibited presynaptically [37]. This may result 

in decreasing the ORN effective activity and/or 

corresponding increase of the firing threshold . 

This might improve the effect of increasing the 

selectivity gain.

Further, the axon from a single ORN evidently 

arborizes and forms several synapses [38]. This 

might increase the ORN effective activity and cause 

a corresponding decrease of the firing threshold  

expressed in terms of the number of ORN spikes, 

with a negative effect on the selectivity gain. 
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