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High selectivity (specificity) and sensitivity to natural or artificial stimuli which are 
normally observed for biological systems can be realized in an ensemble composed 
of many co-operatively connected primary receptors. The co-operative interaction 
results in the formation of several stable states and a switching from one state to 
another is performed in a threshold manner. When any noise is absent the ensemble 
with a threshold can secure as high a selectivity and sensitivity as is desired. The 
presence of noise sets limits on the possible informational quality of a system because 
spontaneous switchings will occur. The question: What advantage as regards selec- 
tivity and sensitivity can a co-operative system with a threshold have is considered 
quantitatively as an example for a bistable chemical system. As a result it is 
established that a co-operative system may have much higher selectivity and sensitiv- 
ity than its individual primary receptors. 

Introduction 

Systems with threshold-manner  reactions are characteristic of  biological objects. A 
system of  vol tage-dependent  ion channels in an excitable neuronal  membrane  
(Kostjuk,  1983), or the A-phage repressor system (Ptashne, 1986), or the system of  
Ag-specific receptors on a lymphocyte  surface (Kane et al., 1989) are examples of  
such systems. A substantial  role of  such systems in keeping up homeostasis  was 
ment ioned by Ashby (1960). On the other hand,  a system with a threshold may 
secure high specific (selective) and sensitive reactions to an applied stimulus, and 
also protection against an external noise, when compared  with individual pr imary 
receptor  characteristics. As a simple example  they may serve an ensemble with an 
unstable threshold (Vidybida, 1988). The ensemble consists of  a large number  ( N )  
of  identical pr imary receptors,  and any receptor  has an active (switched on) and a 
non-active (switched off) state. Assume that  some external stimulus characterized 
by a parameter  to can change the probabil i ty of  finding a receptor  in its active state. 
One may regard to as a sound or electromagnetic signal frequency (Devjatkov,  
1973); a spatial co-ordinate in a morphogenic  field (Lewis et al., 1977); a parameter  
that characterizes an antigenic determinant  conformat ion  (Paul, 1984); or a para-  
meter  which characterizes patterns to be recognized by a nervous system. We say 
that the pr imary receptor  has a selectivity with respect to to if the probabil i ty of  
finding a receptor  in its active state depends on to and has a max imum for some 
value to = to . . . .  The pr imary receptor  response characteristic v(to) is the probabil i ty 
normalized by unity at to = toma~ (see Fig. 1). The presence of  threshold instability 
means  that the ensemble will switch to its active state [e.g. a lymphocyte  triggering 
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FIG, 1. An individual primary receptor [~,(to)] and a co-operative ensemble [/z(to)] response charac- 
teristics, v o is an idividual receptor noise (background) level--the (normed) probability to be switched 
on without an external stimulus, in the case of  CTL Uo----0; in the model reaction (4) J,o = 
x , / ( ~  t+×2)/[x2(oJm~,)/(xl+x2(a~ma~))], where x l ,  x 2 are the rate constant values without external 
stimulus. 

(Kane et al., 1989)] if and only if the number of primary receptors which are in 
their own active state exceeds some threshold number No -< N. So, the ensemble 
response characteristic ~(to) may be estimated approximately based on a probability 
multiplication rule: 

~(to) = [,,(to)]N0. 

If the response characteristic u(to) has a maximum for some value to = tomax then 
it may be characterized by the half-width $i. The/z(to) half-width S, is then estimated 
a s  

s,= s,/v~o. (1) 

For example, it follows from (Kane et al., 1989) t ha t  the triggering of cytolytic T 
lymphocyte (CTL) may occur if alloantigen is binded with not less than ~40 000 
of its surface receptors. Here No ~ 40 000, and so the CTL recognition (and trigger- 
ing) will be ~200 times more specific (selective) than the corresponding alloantigen 
recognition by a receptor. It follows from (1) and Fig. 1 that the higher the threshold 
level the more selective is the ensemble response. On the other hand, it is desirable 
that the threshold level is near the systems background level (without stimulus) 
activity to secure high sensitivity. But if the background and threshold levels are 
close to each other the spontaneous (caused by an interval noise) switchings will 



S E L E C T I V I T Y  T H R O U G H  C O - O P E R A T 1 V I T Y  161 

frequently occur: the level of  fluctuations increases near a threshold (Ma, 1986). 
Thus, to answer what advantage as regards selectivity and sensitivity a system may 
have with a threshold a quantitative consideration is needed. As an example of  such 
a system in which a noise level together with threshold and background levels arise 
naturally, as inherent features, we consider a model bistable chemical system which 
is an extension of  the Shl/Sgl model (Shl6gl, 1971) to a noisy case: 

kT 
A + 2X ~. ' 3X (2) 

k7 
k~ 

B + X < ~ C* the Shl6gl model (3) 
k; 

C*-. .......... ; C* ,  (4) 
~2(oJ) 

where A = const, B = const, C = C * +  C * =  const, and C* and C* may be under- 
stood as active and non-active conformations of  the same molecule C regarded as 
a primary receptor. We do not specify a concrete stimulus able to shift the reaction 
(4) balance. In particular it may be an external electromagnetic field with frequency 
to which can change (Ivlev & Mel'nikov, 1986) one of  the rate constants ~1, •2. The 
(thermal) noise appears in the model (2-4) by taking into account the probabilistic 
nature of  the rate constants. We suppose that the reactions in (4) are much faster 
than any reaction in (2) or (3). This implys some simplifications as regards the 
corresponding dynamical system dimension as well as an adequate noise consider- 
ation. As a result the dynamics of  the system are described by the Langevine equation 
(Gardiner,  1985) 

d X  / dt  = - k ;  X 3 + k? A X  2 - k2 B X  + k~ C* + v/2-'D~:(t), (5) 

with a white noise as a source of  noise: (~(t)~(t  + ~-))= 8(~-). Equation (5) with the 
noise excluded describes a bistable system with two stable rest states characterized 
by X~, X3 (X~ <X3)  concentrations (ShlOgl, 1971), and if the C* concentration 
exceeds some threshold value the system will switch from the XI to )(3 state. To 
determine the "diffusion coefficient" D we take into account that it is adequate to 
describe the system using concentration values at a single point, as eqn (5) does, if 
and only if the spatial homogenei ty is secured. So, the volume where the reactions 
(2-4) proceed must be small enough to avoid the nucleation processes (when two 
stable concentrations coexist in the same volume). The maximum among such 
volumes is called a coherent  volume. Its characteristic size L depends on the efficiency 
of  mixing. Suppose mixing is caused by thermal diffusion only then we have the 
following estimation for L 

k L 2 / ( 2 D x )  ~ 1, (6) 

where D x  is the molecular  diffusion coefficient for the X- type  molecule and k is 
the rate of  the fastest process in (2) and (3). I f  we consider the reactions in the 
coherent  volume Vc the stochastic term in (5) arises from fluctuations n(t)  of  the 
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mean number N* of  C*-type molecules in Vc expressed in terms of  C*-concentra- 
tion fluctuations. As it follows from the probabilistic nature of  eqn (4) n(t) is 
normally distributed and has a correlation function ( n ( t ) n ( t +  r ) ) =  
N*x~ exp ( -YH) /1 / .  where y = xl + x2. As the processes in (4) are much faster when 
compared to (2) and (3) we may consider a non-correlated stochastic process A~(t) 
instead of  the short-correlated process n(t) .  where A should be chosen to equalize 
both spectral densities for the zeroth harmonic. When expressed in terms of  k~C*, 
this gives: 

k~-C* ,,,~+2,-,.2 \ ~/2 / Z K  2 L ;~l~t ~ . .  

N* n( t )~ t  ~ ) ~(t), 

and so 
k+2 ,.-,,2 

2 L. ~1 
D - N , T  2 (7) 

If  T denotes the temperature; ~7 is the solvent viscosity; r is the molecule radius; 
a is the volume fraction of  C-type molecules then there follows from eqn (6) 
[ Dx = k~T/(61rrrl)] 

N.=tex2(kBT] '"  1 
"Y \ - ~ - /  r4.5?./ l .5kl.  5 . ( 8 )  

For water as a solvent at T = 3 1 0  K, with r =  1.5/~, c~ =0.05,  ~ / ~ 2 -  1, k -  1 sec -~, 
eqn (8) gives N * -  10 ~5, 

It is known that for a bistable system with noise the switching from one state to 
another  occurs from time t o  time. The characteristic of  this process is the mean 
waiting times T~3 or T3,~ for a first switching (Gardiner,  1985). What we are 
interested in is a changeover of  T~3 when w, and so C* changes. The changeover 
for various oJ values is described by the co-operative response characterist ic/z(w):  

Tl_,3[ C* + AC*( wmax) ] 
~(o~) =-- 

T,,3[ C* + AC*(o))] 

We also introduce the response characteristic of  an individual primary receptor 

~(o~) =- [ C* + AC*(,o)]/[  C* + aC*(,om.x)]. 

The following relation between two response characteristics is established, provided 
~C*(wm,x)/C* is small enough (see Appendix A) 

/x(w) = [ u(w)] e, (9) 

where P = N*y/k~. 
The exponent  P may be referred to as the degree of  co-operativity of  the response, 

which may be very large. For example if the above assumptions regarding the 
coherent volume are fulfilled then P >> 1015. From eqn (9) and Fig. 1 we see that if 
~,(w) has a broad maximum and P is big enough, then Iz(w) will have a very sharp 
maximum, i.e. high selectivity with respect to w. The effect is measured by a half-width 
contraction: 

S , l &  =, /p .  (1  - Vo),  
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where Vo is the background (noise) level o f  an individual pr imary receptor  (see 
Fig. 1). 

The system sensitivity is estimated by the T1~3 changeover  corresponding to a 
small deviation AC* of  a concentrat ion C*. When the "diffusion coefficient" 
changeover  is neglected, and T1~3 is changed because of  the deformat ion of  the 
"potent ia l"  in the Fokker -P lanck  equation (Gardiner,  1985) which corresponds to 
eqn (5) we have the following expression 

TI~3(C*) ( r ac*  
TI.3( C* + AC*)  - e x p  k'~ C* ]" 

Thus, the dynamical  pat tern of  a system may be changed very dramatical ly by a 
minute concentrat ion change provided the coherent  volume and as a result are N *  
large enough. 
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APPENDIX 

Let F ( X )  denote the deterministic part  o f  the right-hand side of  eqn (5). We 
introduce a "potent ia l"  U ( X )  using the following expression 

U ( X ) =  - F ( Y ) d Y .  

The "potent ia l"  has two minima at points XI and X3 and one max imum at point 
X, .  The max imum is supposed to be pronounced,  so the inequalities 

[ U ( X 2 ) -  U ( X I ) ] /  D >> 1, 

[ U ( X 2 ) -  U(X3)]/D>> 1 

are satisfied. The inequalities make it possible to apply  the Arrhenius approximat ion  
for the mean waiting t ime for the first switching: 

27r 
TI-3 - ] U"(XI)  U"(X2)] 2 exp (U , . f fD) ,  (A.1) 
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where Ul.2 = U(X2)- U(X,). Our purpose is to estimate how much T1-3 changes 
when C* gets a small positive increment AC*. The AC* is thought to be small 
enough, so that the following inequalities hold 

AC* 
~ < <  1, k~-z$C*<< -F(Xo),  (A.2) 
C* 

where Xo is the minimum point of F(X). We also assume the inflection point of 
F(X)s graph to be above the X-axis. Then it follows from (A.2) that 

k~'AC* << (X2-X,)[F'(X,)[, i=  1, 2. (m.3) 

The rest points X; get deviations AXi which can be estimated in the AC*s first-order: 

AX, = -k~AC*/ F'(X,). (A.4) 

It follows from eqn (A.4) and inequality (A.3) that 

l a x i  l << x 2 -  x ,  . 

This inequality allows us to neglect the change in the pre-exponential term in eqn 
(A.1). The change in the exponent in (A.1) is due to the change in U,.2: 

U,,2-, U,,2+ (X, - X2)k~ aC*,  (A.5) 

and in D: 

D ~  D +  D" (1-2x2/xl )  AC*/C*. 

The expressions are valid up to the first-order of AC*. If 

2x2/xt <- 1 (A.6) 

the deviation of the "diffusion" coefficient has an effect of the same sign as does 
AU1.2 [see (A.5)]. We neglect this part of the effect to make the final expressions 
more demonstrative. Thus, using (A.5), we have 

T,_3(C* ) ex n {3N. y AC*'~ (A.7) 
T, .3(C.+AC.)  ~ v \~  ~ C'Y"  

In the last transformation, we assume for definiteness, that in (A.6) an equality 
takes place and that 

( X 2 - X , ) / C * ~  1. 

Using eqn (A.7) with AC*(w) and AC*(toma0 substituted for AC*, we have, up to 
the first-order of AC*/C*, 

~(w)= e x p \  - ~  C* ]_] =[v(w)]e" 


