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Abstract Probability density function (pdf) of output interspike intervals (ISI) as well as
mean ISI is found in exact form for leaky integrate-and-fire (LIF) neuron stimulated with
Poisson stream. The diffusion approximation is not used. The whole range of possible ISI
values is represented as infinite union of disjoint intervals: ]0;∞[=]0; T2] + ∑∞

m=0]T2 +
m T3; T2 + (m + 1)T3], where T2 and T3 are defined by the LIF’s physical parameters. Exact
expression for the obtained pdf is different on different intervals and is given as finite sum
of multiple integrals. For the first three intervals the integrals are taken which brings about
exact expressions with polylogarithm functions. The found distribution can be bimodal for
some values of parameters. Conditions, which ensure bimodality are briefly analyzed.

Keywords LIF neuron · Poisson stochastic process · Probability density function · Output
intensity

Mathematics Subject Classification 60G55 · 60G10 · 60K15 · 60K40 · 92B20

1 Introduction

The leaky integrate-and-fire (LIF) neuron [2], is a widely used model in theoretical neuro-
science, which is due to its simplicity, see Sect. 2.1. At the same time, the problem of finding
the probability density function (pdf) of the output stream of interspike intervals (ISIs) of LIF
neuron under Poisson stimulation is not solved exactly. Partially, this may be explained by
the fact that any input impulse decays exponentially and its remnant is present in the neuron
until next firing. Numerous results regarding description of the output stream are obtained

A short version of this paper was published in Ukrainian [1].
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in diffusion approximation, see review [3]. In the diffusion approximation, the time course
of the membrane potential (the degree of excitation) is described as the Ornstein–Uhlenbeck
stochastic process [4]. In this approach, the mean output ISI and dispersion can be calcu-
lated. As regards the ISI pdf, the only found expressions are approximate, due to difficulties
in calculation of the first passage times distribution for the Ornstein–Uhlenbeck stochastic
process, see [5].

The usage of diffusion approximation is approved if a large number of input impulses,
delivered in a short period of time, is necessary to trigger a neuron. This situation is realistic
for some biological neurons [6]. For some biological neurons triggering can be achieved with
a small number of input impulses, starting from two, see [7,8]. For those neurons description
in terms of diffusion approximation cannot be approved.

In the interesting paper [9], ISI pdf is calculated without diffusion approximation as well.
In that paper, instead of expecting that excitation decays in time exponentially (see Eq. 5) it
is assumed that input impulse is stored unchanged in the neuron during random time interval
after which it disappears. At first glance, this is serious deviation from the deterministic
exponential decay (Eq. 5), pertinent for real neurons. But for triggering the time course of
compound postsynaptic potential is essential. Under the assumptions of [9] the time course
is approximated with a step-like function. This approximation is the more precise the more
impulses are required for triggering. In [9], the found pdf matches experimental one if output
ISI is longer than 60 ms. During this time a large number of input impulses can arrive to
neuron. This explains good fit with experimental histograms obtained in [9].

In this paper, the ISI’s pdf and mean output ISI are calculated in exact form without
usage of diffusion approximation. Calculations are made for the least favorable for diffusion
approximation case when already two input impulses are able to trigger neuron, provided
that the impulses are applied with a short time interval, see condition (1). Exact value of the
pdf for a concrete ISI length t is obtained as a finite sum of multiple integrals.

2 Statement of the Problem

2.1 Definition of Leaky Integrate-and-Fire Neuron

The LIF neuronal model used in this paper is a simplest one. It is characterized with three
positive constants:

1. τ is the relaxation time,
2. V0 is the firing threshold,
3. h is the input impulse height.

As regards h and V0, we hypothesize the following condition:

0 < h < V0 < 2h. (1)

At any moment l ∈ [0;∞[, the LIF’s state is described with a non-negative number V (l),
which is interpreted as deviation of trans-membrane potential from the resting state in the
direction of depolarization, or in other words, the degree of excitation. Here we expect that
V = 0 at the resting state, and V > 0 in the presence of depolarization/excitation.

Stimulation is due to input impulses. An input impulse received at moment l advances
V (l) by h:

V (l) → V (l) + h. (2)
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Here we expect that input impulses are delivered to the LIF neuron from a Poisson stream
of intensity λ. Among several equivalent descriptions of Poisson stochastic process (see e.g.
[10, Chap. II, § 9]) we chose the following one. Possible trajectories of Poisson process are
given through consecutive moments {l1, l2, . . . , lk, . . . } of receiving input impulses,

0 < l1 < l2 < · · · < lk < · · · . (3)

Poissonian measure on cylinder sets of trajectories is defined as usual:

e−λl1λdl1e−λ(l2−l1)λdl2 . . . e−λ(lk−lk−1)λdlk . (4)

The leakage in the LIF means that without stimulation V (l) decays exponentially:

V (l + s) = V (l)e− s
τ , s > 0. (5)

LIF is characterized with the threshold value of excitation, V0. The latter means that once
the following condition is fulfilled: V (l) > V0, the LIF fires a spike (sends output impulse)
and appears in its resting state, V (l) = 0.

It follows from (5) and (2) that LIF may fire only at moments of receiving input impulses.
Condition (1) means that a single input impulse applied to LIF in its resting state cannot
trigger firing, but already two input impulses applied in a short succession are able to trigger.

Calculation methods used here are transparent enough if limitation (1) is imposed. This
does not exclude applicability of our methods when, instead of (1), another condition, like
2h ≤ V0 < 3h or so, is fulfilled. At the same time, without condition (1) fulfilled one could
expect additional combinatorial difficulties in calculations. On the other hand, used here
condition (1) is the least favorable for usage of diffusion approximation.

2.2 Output Stream

When a LIF neuron is subjected to Poisson stimulation, it sends output impulses in some
moments. Our task is to characterize the output stream.

Notice that neuron appears in its standard state with V = 0 after each firing. The state of
the input stream (Poisson stream) is the same all the time. Therefore, the output stream must
be a renewal process. For our use it is enough to know its ISI’s pdf P(t). Expression P(t) dt
gives probability to have an ISI duration within [t; t + dt[. This probability can be found as
probability that the first triggering happens t units of time after switching on, provided that
at the switching on moment (starting of the epoch), LIF is at its resting state: V (0) = 0.

The problem of calculating P(t) in our case belongs to a class of boundary tasks for
stochastic processes, and can be reduced to the first passage problem for crossing the level
V0. This type of tasks are pertinent for mass service theory, risk assessment and others. One
model used in this area is the compound Poisson process with drift (CPPD). In particular,
CPPD model is used in [11, p. 125] for description of neuronal activity (see also Sect. 6).
The approach of [11] is not suitable in situation denoted in (5) (the presence of electric loss).

3 Existence and Continuity of P(t)

The first impulse after switching on is generated at moment t if and only if the following two
independent events take place. The first event is that all input impulses received between 0
and t do not trigger the neuron, but create such an excitation (V (t)) at time t , that an impulse
received at the moment t triggers the neuron. Actually, that means that V (t) > V0 − h. The
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second event is receiving impulse during [t; t + dt[. If P̃(t) denotes the probability of the
first event, then

P(t)dt = P̃(t)λdt.

Definition 1 A sequence of k input impulses, or moments of their arrival {l1, l2, . . . , lk}, is
called a silent k-sequence if our LIF neuron does not fire starting from its resting state during
receiving the whole sequence of that k input impulses.

Let Mk,t , where k = 1, 2, . . . and t > 0, denote an event that the first k input impulses,
{l1, l2, . . . , lk < t}, compose a silent k-sequence and create such excitation in the LIF,
that arrival of the next one at moment lk+1 ∈ [t; t + dt[ triggers it. The letter means that
V (t) > V0 − h. Let P̃k(t) denote the probability ofMk,t .

Theorem 1 The probability P̃k(t) exists and it is a continuous function of t .

Proof Let Vl1...li (x) denote the following function:

Vl1...li (x) = h
i∑

j=1

e−(x−l j )/τ . (6)

If {l1 . . . li } is a silent sequence and x > li , then Vl1...li (x) gives the level of excitation at
moment x if input impulses are obtained at moments {l1, . . . , li }.

The left hand part in Eq. (6) suggests that Vl1...li (x) is a function from R
1 to R

1 with
parameters (l1, . . . , li ) ∈ R

i . At the same time nothing prevents us from interpretingVl1...li (x)

as a function from R
i+1 to R

1 with an argument (l1, . . . , li , x). Further, Vl1...li (x) can be as
well interpreted as a function from infinite-dimensional space R

N to R
1, which takes into

account only the first i + 1 coordinates of a point in the RN. The latter interpretation is used
after Eq. (9).

A sequence {l1, l2, . . . , lk} is silent if and only if the following conditions are satisfied:

Vl1(l2) ≤ V0 − h, Vl1l2(l3) ≤ V0 − h, . . . , Vl1...lk−1(lk) ≤ V0 − h. (7)

Further, an impulse at moment lk+1 ∈ [t; t + dt[ will trigger if and only if in addition to (7)
the following conditions are satisfied:

lk < t, (8)

Vl1...lk (t) > V0 − h. (9)

The set Mk,t of realizations of Poisson process, which corresponds to eventMk,t , is defined
in RN by conditions (3), (7), (8) and (9). Since all those conditions are formulated by means
of inequalities composed of continuous from R

N to R
1 functions, then Mk,t is a Borel set

and Mk,t is a correct (measurable) event. Thus, P̃k(t) exists.
In order to prove continuity of P̃k(t) one has to estimate the difference

|P̃k(t + �t) − P̃k(t)|. (10)

This difference is equal to the difference of measures (4) of sets Mk,t and Mk,t+�t . The latter
difference does not exceed the measure of any of two sets: Mk,t+�t\Mk,t and Mk,t\Mk,t+�t .

The set Mk,t+�t\Mk,t is defined by (3), (7) and the following conditions:

t ≤ lk < t + �t, Vl1...lk (t + �t) > V0 − h.
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First of these conditions ensures that measure (4) of Mk,t+�t\Mk,t is of order O(�t).
The set Mk,t\Mk,t+�t is defined by (3), (7) and the following conditions:

Vl1...lk (t) > V0 − h, Vl1...lk (t + �t) ≤ V0 − h.

Taking into account (6), the latter can be presented as follows:

V0 − h < Vl1...lk (t) ≤ e�t/τ (V0 − h). (11)

Let M�t denote a set in RN, composed of all such points {l1, . . . , lk, . . . } from R
N that their

first k coordinates {l1, . . . , lk} satisfy (11). M�t is a correct event and M�t ⊃ Mk,t\Mk,t+�t .
Thus, measure (4) of Mk,t\Mk,t+�t does not exceed measure of M�t . Additionally �t2 >

�t1 ⇒ M�t2 ⊃ M�t1 and
⋂

�t>0
M�t = ∅. It follows from the latter that measure of M�t

converges to zero if�t → 0, and the same takes place for Mk,t\Mk,t+�t . Thus, the difference
(10) converges to zero if �t → 0, and continuity of P̃k(t) is proven. 	

Theorem 2 ISI’s probability density function P(t) exists and it is continuous in t.

Proof It is evident that the input impulse, which causes the first triggering, may have number
n = 2, 3, . . . , and events with different n are disjoint. Therefore

P(t)dt =
∑

k≥1

P̃k(t)λdt. (12)

With t fixed, the sum (12) is finite. Indeed, if two isolated impulses do not trigger, then those
impulses are separated in time by not less than T2 units of time, where T2 is defined by the
following condition he−T2/τ = V0 − h, or

T2 = τ ln
h

V0 − h
. (13)

If additional impulses are received before those two, then those two must be separated by
an interval even longer than T2. Thus, for any t there is such a kmax , that it is impossible
to allocate within ]0; t[ a silent m-sequence with m > kmax , and P̃m(t ′) = 0 for t ′ ∈ ]0; t[.
Therefore, P(t) is correctly defined by (12). 	


In order to prove the continuity, we have to figure out exactly which terms are present
in (12) for any t . For this purpose let us define interval T3 by the following condition:
V0e−T3/τ = V0 − h, or

T3 = τ ln
V0

V0 − h
. (14)

The set of all possible ISI values can be now represented as union of disjoint subsets:

]0;∞[=]0; T2] +
∞∑

m=3

]Θm;�m+1], (15)

where

Θm = T2 + (m − 3)T3, m = 3, 4, . . . , Θ2 = 0.

If we define as lk − l1 the length of sequence {l1, l2, . . . , lk}, then Θm is the minimal possible
length of silent (m − 1)-sequence. Indeed, the sequence with

l1 = 0, l2 = Θ3, . . . , lm−1 = Θm (16)
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is silent. Indeed, from the definitions of T2, T3 it follows that for the sequence (16) the
following equations hold:

Vl1(l2) = V0 − h, Vl1l2(l3) = V0 − h, . . . , Vl1...lm−2(lm−1) = V0 − h. (17)

Decreasing of temporal distance between any two consecutive impulses will result in replac-
ing “= V0 − h” with “> V0 − h” somewhere in (17), and in triggering with arrival of second
impulse from those two. Therefore, one can rewrite (12) as follows

P(t)dt =
m−1∑

k=1

P̃k(t)λdt, t ∈ ]Θm;�m+1], m = 2, 3, . . . . (18)

From (18) it follows that P(t) is continuous at intervals ]Θm;�m+1[ as finite sum of con-
tinuous functions. To complete, it is necessary to prove continuity in the points Θm+1,
m = 2, 3, . . . . For this purpose it is enough to prove the following

P̃m(Θm+1) = 0, m = 2, 3, . . . . (19)

The latter follows from the fact that Θm+1 is the shortest length of a silent m-sequence. A
silent m-sequence, which can be allocated on [0;Θm+1] is unique. Its arrival moments are
defined in (16), and lm = Θm+1. Therefore, the cylinder set Mm,Θm+1 has a single point from
R

m as the cylinder base, and probability of the event Mm,Θm+1 equals zero, which proves
(19). 	


4 Form of Terms in (18)

For k = 2, 3, . . . let us introduce the following notations

P0
k (t)λdt is the probability to receive a k-sequence {l1, . . . , lk−1, lk ∈ [t; t +dt[} such

that {l1, . . . , lk−1} is silent.
P−

k (t)λdt is the probability to receive silent k-sequence {l1, . . . , lk−1, lk ∈ [t; t + dt[}.
It is clear that

P0
k (t) = 0 if t ∈]0;Θk], P−

k (t) = 0 if t ∈]0;Θk+1],
and

P̃k(t)λdt = P0
k+1(t)λdt − P−

k+1(t)λdt.

By utilizing the latter, one can rewrite (18) as follows:

P(t)dt =
m−1∑

k=2

(
P0

k (t)λdt − P−
k (t)λdt

) + P0
m(t)λdt, t ∈ ]Θm;�m+1], m ≥ 2. (20)

In particular, P(t)dt = P0
2 (t)λdt if t ∈ ]Θ2;�3], where

P0
2 (t)λdt = λte−λtλdt. (21)

Notice that if for s > Θk+1 the expression P−
k (s)λds gives probability to receive silent

k-sequence {l1, . . . , lk−1, lk ∈ [s; s + ds[}, then the expression P−
k (s)λds e−λ(t−s)λ dt for

t > s gives probability to receive a (k + 1)-sequence {l1, . . . , lk−1, lk ∈ [s; s + ds[, lk+1 ∈
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[t; t + dt[} such that the subsequence of its first k arrival times is silent. Therefore, the
following relation holds:

t∫

Θk+1

P−
k (s)λ ds e−λ(t−s)λ dt = P0

k+1(t)λ dt, t ≥ Θk+1, k = 2, 3, . . . . (22)

Thus, calculation of terms in the sum (20) is reduced to calculation of exact expressions
for P−

k (t), k = 2, 3, . . . . Below, we derive exact expressions for these functions through
multiple integrals. Calculation of the integrals themselves is performed in the next section
for k = 2, 3.

It was already noted that P−
k (t) = 0 if t ∈ ]0;Θk+1], and for t = Θk+1 there is exactly

one silent k-sequence {l1, . . . , lk−1, lk = t}, namely, {Θ2,�3, . . . , Θk+1}. For t > Θk+1

the probability to get a silent k-sequence of type {l1, . . . , lk−1, lk ∈ [t; t + dt[} is strictly
positive. In order to calculate that probability one has to integrate the expression

e−λl1λdl1e−λ(l2−l1)λdl2 . . . e−λ(t−lk−1)λdt

over the set of coordinates l1, l2, . . . , lk−1 such that there is no triggering at moments of time
l1, l2, . . . , lk−1, t :

P−
k (t)λdt = e−λtλkdt

l1∫

l1

dl1

l2∫

l2

dl2 . . .

lk−1∫

lk−1

dlk−1, (23)

where upper and lower limits in integrals still have to be defined.
The lower limits can be determined from condition that input impulses at moments

l1, l2, . . . , lk−1, t should not trigger the neuron. It is clear, that l1 = 0. In general case,
li+1(l1, . . . , li ) can be determined from the following condition: Vl1...li (li+1) = V0 − h,

which gives

li+1(l1, . . . , li ) = T2 + τ ln

⎛

⎝
i∑

j=1

el j /τ

⎞

⎠ , i = 1, . . . , k − 2. (24)

The upper limits in (23) depend additionally on k and t : li+1 = li+1(k, t, l1, . . . , li ).
The value of li+1(k, t, l1, . . . , li ) must be chosen in such a way that ensures a pos-
sibility to allocate moments li+2, . . . , lk−1, t in such a way that resulting k-sequence
{l1, . . . , li , li+1, li+2, . . . , lk−1, t} will be silent.

To figure out li+1(k, t, l1, . . . , li ) with already fixed l1, . . . , li and t it is worth noticing
that non-trigger condition implies that if the biggest possible values for li+1, li+2, . . . , lk−1

are chosen, then:

Vl1...li li+1
(li+2) = V0 − h, (25)

. . .

Vl1...li li+1 li+2...lk−1
(t) = V0 − h.

From the latter it follows that for the biggest possible values of li+1, li+2, . . . , lk−1 the
following equations are valid, see Fig. 1:

li+3 − li+2 = li+4 − li+3 = · · · = t − lk−1 = T3.
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0

h

l1

V −
0

l2

V −
0

li+1

V0

li+3

T3

V0

lri+2

V0

lk−1

T3 T3

t

V0V0

lk−2

Fig. 1 Disposition of time moments for determining li+1(k, t, l1, . . . , li ). The upper row indicates the value
of depolarization at each moment after receiving input impulse at that moment. Here V −

0 ≤ V0 and T2 <

lr
i+2 − li+1

Thus, the biggest possible value for li+2 is as follows:

lr
i+2 = t − (k − i − 2)T3.

li+1(k, t, l1, . . . , li ) can be now found if we substitute lr
i+2 for li+2 in the (25):

li+1(k, t, l1, . . . , li ) = τ ln

⎛

⎝e(t−Θk+1−i )/τ −
i∑

j=1

el j /τ

⎞

⎠ , i = 0, . . . , k − 2. (26)

Equations (23), (24), (26) give the exact expressions for probabilities P−
k (t)λdt , k = 2, . . . .

4.1 Calculation of the First Terms in (20)

We calculate1 here exact expressions for the P(t)dt at first domains of the partition (15).
Calculations in accordance with Eq. (23) with k = 2, or k = 3 give the following:

P−
2 (t) = e−λtλ(t − T2), t ≥ Θ3, (27)

P−
3 (t) = e−λtλ2

(

(t − 2T2)(t − Θ4) − 1

2
(t − Θ4)

2
)

(28)

+ e−λt (τλ)2
(
Li2

(
e(T2−t)/τ

)
− Li2

(
e−T3/τ

))
, t ≥ Θ4,

where Li2 denote dilogarithm.
The resting terms in (20) for t ≤ Θ5 can be found with the help of Eqs. (27), (28) and

(22):

P0
3 (t) = e−λt λ

2(t − T2)2

2
, t ≥ Θ3, (29)

P0
4 (t) = e−λt λ

3

6
(Θ4 − t)2(2T3 − 4T2 + t)

+ e−λtτ 2λ3(Θ4 − t)Li2
(

e−T3/τ
)

+ e−λt (τλ)3
(
Li3

(
e−T3/τ

)
− Li3

(
e(T2−t)/τ

))
, t ≥ Θ4, (30)

where Li3 denote trilogarithm.

1 Calculations are made with the help of free computer algebra system maxima
(maxima.sourceforge.net).
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Exact expressions (21), (27)–(30) give exact expressions for (20) at the initial part of t
values:

P(t)dt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P0
2 (t)λdt, t ∈ ]0; T2],(
P0
2 (t) − P−

2 (t) + P0
3 (t)

)
λdt, t ∈ ]T2; T2 + T3],(

3∑

k=2

(
P0

k (t) − P−
k (t)

) + P0
4 (t)

)

λdt, t ∈]T2 + T3; T2 + 2T3],
(31)

where T2, T3 are given by Eqs. (13), (14). A graph of the expressions (31) is shown in Fig.
2a.

Also, for the checking purpose, the P(t) for t ∈]0;Θ5] was calculated numerically, by
means ofMonte Carlo method. In theMonte Carlo calculations, we use theMersenne Twister
random number generator implemented in the GNUScientific Library (https://www.gnu.org/
software/gsl/-). The result is shown in Fig. 2b. See also examples in Fig. 3.

5 Mean Interspike Interval

The mean ISI t can be calculated as follows:

t ≡
∞∫

0

t P(t)dt,

or, taking into account Eq. (20):

t =
∞∑

m=2

�m+1∫

Θm

t

(
m−1∑

k=2

(
P0

k (t) − P−
k (t)

) + P0
m(t)

)

λdt. (32)

It can be proven that in (32) the terms with sign “plus” compose an absolutely convergent
series, and the same is valid for terms with sign “minus”. This allows arbitrary regrouping of
terms in (32)without changing thewhole series value. In particular, after a suitable regrouping
one has:

t =
∞∫

0

t P0
2 (t)λdt +

∞∑

m=3

∞∫

Θm

t
(
P0

m(t) − P−
m−1(t)

)
λdt. (33)

Taking into account (21) and (22) in (33) gives after integration by parts:

t = 2

λ
+ 1

λ

∞∑

m=3

∞∫

Θm

P−
m−1(t)λdt. (34)

From the definition of P−
m−1(t) it follows that

∫ ∞
Θm

P−
m−1(t)λdt is the probability that the

first m − 1 input impulses compose a silent (m − 1)-sequence. Thus

∫ ∞

Θm

P−
m−1(t)λdt = λm−1

∞∫

0

dl1

∞∫

l2

dl2 . . .

∞∫

lm−1

dlm−1e−λlm−1 . (35)

Equation (35) can also be proven formally by substituting there P−
m−1(t) as given in (23) and

reversing the integration order with respect to t and li , i = 1, . . . , m − 2, m − 2 times. With
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Fig. 2 Pdf of ISIs, P(t), a found analytically by means of (31); b found numerically, by Monte Carlo
simulation (used 1,000,000 output ISIs). Here λ = 62.5 s−1, τ = 20 ms, V0 = 20 mV, h = 11.2 mV.
The total probability mass under the curve drawn (0 ≤ t ≤ Θ5 = 37.66 ms) is 0.454. The coefficient of
determination between the two curves is R2 = 0.981105
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Fig. 3 Examples of pdf for different parameter values found analytically (a, c) and numerically, by Monte
Carlo simulation (b, d). In a, b τ = 20 ms, the curve’s domain is [0; Θ4], the total probability mass under
the curve drawn is 0.990811, R2 = 0.998983. In c, d τ = 80 ms, the curve’s domain is [0;Θ3], the total
probability mass under the curve drawn is 0.999994, R2 = 0.998991. In a–d λ = 62.5 s−1, V0 = 20 mV,
h = 19 mV, the number of output spikes used in Monte Carlo simulations is 1,000,000. Notice, that in the
simulations, only those generated ISIs contribute to calculation of corresponding curve, which fall into its
domain. This explains why curve in Fig. 2b is considerably less regular than those displayed here (b, d), in
spite of the same number of output spikes generated

the following notation
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Pk = λk

∞∫

0

dl1

∞∫

l2

dl2 . . .

∞∫

lk

dlke−λlk , (36)

Eq. (34) takes the following form:

t = 2

λ
+ 1

λ

∞∑

m=3

Pm−1. (37)

In order to calculate integrals Pk it is necessary to use explicit expressions (24) for
functions li+1(l1, . . . , li ), or the following equivalent expressions:

i∑

j=1

el j /τ = a eli+1/τ , i = 1, 2, . . . , k − 1, (38)

where

a = V0 − h

h
, 0 < a < 1.

Use in (36) the following substitution of variables:

xi = e
li
τ , dli = τ

dxi

xi
, i = 1, 2, . . . , k. (39)

Then the lower limits of integration and the integrand turn into the following:

li = 1

a

i−1∑

j=1

x j , i = 2, 3, . . . , k, e−λlk = 1

(xk)λτ
,

and

Pk = (λτ)k

∞∫

1

dx1
x1

∞∫

1
a x1

dx2
x2

. . .

∞∫

1
a

k−1∑

j=1
x j

dxk

xk
λτ+1 , k = 2, 3, . . . . (40)

In particular,

P2 = (λτ)2

∞∫

1

dx1
x1

∞∫

1
a x1

dx2

xλτ+1
2

= aλτ . (41)

Now, the task of calculating the mean ISI is reduced to finding all termsPk in accordance
with Eq. (40). Let us calculate in (40) the rightmost integral:

Pk = (λτ)k−1

∞∫

1

dx1
x1

∞∫

1
a x1

dx2
x2

. . .

∞∫

1
a

k−2∑

j=1
x j

dxk−1

xk−1

aλτ

(∑k−1
j=1 x j

)λτ
, k = 3, 4, . . . . (42)
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Now, replace k − 1 with k′ in (42) and omit prime in k′:

Pk+1 = (λτ)kaλτ

∞∫

1

dx1
x1

∞∫

1
a x1

dx2
x2

. . .

∞∫

1
a

k−1∑

j=1
x j

dxk

xk

(
xk +

k−1∑

j=1
x j

)λτ
, k = 2, 3, . . . . (43)

Let us denote

sk =
k∑

j=1

x j , λτ = r.

Then, instead of (43) one has

Pk+1 = rkar

∞∫

1

dx1
x1

∞∫

1
a x1

dx2
x2

. . .

∞∫

1
a sk−1

dxk

xk

(
xk + sk−1

)r , k = 2, 3, . . . .

In the rightmost integral, perform substitution of variable as follows:

z =
(

xk

sk−1
+ 1

)−1

.

The result is as follows:

Pk+1 = rkar

∞∫

1

dx1
x1

∞∫

1
a x1

dx2
x2

. . .

∞∫

1
a sk−2

dxk−1

xk−1

(
xk−1 + sk−2

)r I (a, r), k = 3, 4 . . . , (44)

where

I (a, r) =
a

a+1∫

0

zr−1

1 − z
dz. (45)

Comparing (44) with (42), one has:

Pk+1 = r I (a, r)Pk,

and further

Pk = (r I (a, r))k−2ar , k = 2, 3, . . .

It can be proven (see Appendix 1), that r I (a, r) < 1 for r > 0, 0 < a < 1. Thus, from (37)
and (41) one has the following:

t = 2

λ
+ 1

λ

∞∑

m=2

ar (r I (a, r))m−2 = 2

λ
+ 1

λ

ar

1 − r I (a, r)
. (46)

6 Discussion

We obtained here the ISI probability distribution function for the LIF neuron without usage
of diffusion approximation. The diffusion approximation can be precise enough if a large
number of input impulses is required for triggering, [3,4].We considered here the case, which
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Fig. 4 Pdf of ISIs, P(t), found numerically, by Monte Carlo simulation for the cases when at least three (a),
and four (b) input impulses are required to trigger a spike. In a h = 9.2 mV, the total probability mass under
the curve is 0.727. In b h = 6.5 mV, the total probability mass under the curve is 0.395. In a and b: λ = 62.5
s−1, τ = 20 ms, V0 = 20 mV, the number of output spikes used in Monte Carlo calculation is 100,000,000

is least suitable for usage of diffusion approximation. Namely, the LIF can be triggered with
two impulses obtained in a short sequence. This situation is observed for some real neurons
[7,8].

The exact expression found for the pdf is different for different intervals of the whole
range of ISI values, see (18), (31), and is presented by means of multiple integrals, see Eq.
(22), (23). The multiple integrals are taken for the first three intervals, which allows to make
some conclusions about qualitative course of the pdf.

First, it is not Poisson-like. The suitability of Poisson distribution for describing neuronal
activity is discussed in neurophysiology, see, e.g. [12]. In our case, the evident deviation from
exponential distribution near the short ISIs is because more then one (actually two at least)
input impulses are required for triggering. This same deviation will be observed if more then
two impulses are required, see Fig. 4.

Second, the obtained pdf for ISIs distribution has a local minimum at interval ]Θ3;�5]
for some parameter values, see Fig. 2 and Appendix 2. This kind of minimum was not
described earlier for calculations with pure diffusion processes, even if multimodality is often
observed in experimental histograms.2 Under diffusion approximation, an infinite number of
input impulses is required for triggering, whereas in this paper already two input impulses
delivered in a short sequence are able to trigger. This may be the reason of bimodality in Fig.
2. For mathematical models, which combine a diffusion process with random finite jumps, a
multimodality was also observed, [3, Fig. 5.4], see also [13,14].

As regards themean ISI, see Eqs. (45), (46), it is monotonously decreasingwith increasing
λ, as it might be expected.

If we have a look at Eqs. (2), (3) of paper [15] for binding neuron (BN), then it is possible
to recognize their structural similarity with Eqs. (20), (23) here. This is because cond. (1)
ensures that LIF neuron behaves similarly to the BN with threshold 2 in the context of
calculation of contribution of individual events into the triggering probability.

It would be interesting to compare results obtained without diffusion approximation with
those obtained with diffusion approximation. For this purpose it is necessary to obtain results
without diffusion approximation in cases when not two, but many input impulses are required
for triggering. This is not simple task and may be a subject of another paper. Material of this

2 Themain reason of multimodality for neurons embedded into a network is the presence of delayed feedback.
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paper covers the area, where diffusion approximation does not hold, which makes a required
comparison impossible.

Acknowledgements This paper was supported by the Program “Microscopic and phenomenological models
of fundamental physical processes in amicro andmacroworld” of theNationalAcademy of Science ofUkraine,
Project PK No. 0112U000056.

Appendix 1: Upper Bound

Theorem 3 For integral defined in (45), the following estimate is valid:

r > 0 ∧ 0 < a < 1 ⇒ r I (a, r) < 1.

Proof Expression r I (a, r) increases with increasing a. Therefore, it is enough to prove the
statement for a = 1:

r > 0 ⇒ r I (1, r) < 1,

or

r

1/2∫

0

xr−1

1 − x
dx < 1 if r > 0.

	

Here, the integral can be rewritten as follows:

r

1/2∫

0

xr−1

1 − x
dx = r

1/2∫

0

∑

k≥0

xk+r−1dx = r
∑

k≥0

1

k + r

(
1

2

)k+r

.

The last equality is approved by the fact that the integrand is a uniformly convergent series
at the integration domain. The last expression can be transformed as follows:

r I (1, r)

=
(
1

2

)r
⎛

⎝1 + r
∑

k≥1

1

k + r

(
1

2

)k
⎞

⎠ <

(
1

2

)r
⎛

⎝1 + r
∑

k≥1

1

k

(
1

2

)k
⎞

⎠

=
(
1

2

)r

(1 + r log(2)) = φ(r).

The function φ(r) decreases strictly monotonically, and φ(0) = 1. This completes the proof.

Appendix 2: Bimodality

In order the P(t) to have a minimum at [Θ3;�4[ it is necessary that its first derivative has a
zero at this interval. Taking into account (31) we have

d

dt
P(t) = −e−λ t

(
λ4 T 2

2 + (
4 λ3 − 2 λ4 t

)
T2 + λ4 t2 − 2 λ3 t

)

2
= 0.
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The smaller root, t1 corresponds to a minimum here. Expression for it is as follows:

t1 = λ T2 + 1 − √
1 − 2 λ T2

λ
.

In order the t1 to be real, we need λ < 1/(2T2), or, taking into account (1) and (13) one has

λ < − 1

2τ log(g − 1)
, where g = V0/h, 1 < g < 2. (47)

In order the t1 to fall into the [Θ3;�4[ we need t1 < T2 + T3, or using additionally (14) one
has

λ < 2
log(g)

τ (log(g/(g − 1)))2
. (48)

It can be estimated numerically that the inequality (47) follows from the inequality (48).
Thus, the (48) gives the necessary and sufficient condition for the P(t) to have a minimum
at [Θ3;�4[. Actually (48) imposes limitation on the product λτ :

λτ < 2
log(g)

(log(g/(g − 1)))2
.

Here, the right hand side has a maximal value ∼2.885 at g = 2. Thus, if the relation between
V0 and h is only specified by (1), then for h close to V0/2 we have

λτ < 2.885.
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