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I. INTRODUCTION

Spiking statistics of various neuronal models under a
random stimulation has been studied in the framework
of two main approaches. The first one is named in [1]
as “Gaussian”, because it describes random stimulation
by means of Gaussian noise, see e.g. [2]. This approach
has developed into the well-known diffusion approxima-
tion methodology, see [3]. The second approach is named
in [1] as “quantal”, because it takes into account the dis-
crete nature of the influence any input impulse may have
on its target neuron. The wide area of research and ap-
plications known as spiking neural networks, see [4] for a
review, could be considered as utilizing the quantal ap-
proach. For a recent review of mathematically rigorous
results regarding neuronal the spiking statistics in the
both approaches see [5]. We study here mathematically
rigorously, in the framework of quantal approach, spik-
ing statistics of the inhibitory neuron model belonging
to a class of models (see Sec. II, below) with fast Cl-type
inhibitory delayed feedback (see Fig. 1, below).

A. Biological inspiration

The neurons which send inhibitory impulses onto their
own body or dendrites are known in real nervous systems,
see [20–23]. The chief inhibitory neurotransmitter in the
nervous system is Gamma-aminobutyric acid (GABA).
The GABA can activate several types of receptors, the
main of which are GABAa and GABAb. If GABAa re-
ceptors are activated, the excitable membrane becomes
permeable for Cl− ions. If a neuron is partially excited,
that is its membrane is depolarized, the Cl− current can-
cels this depolarization since the Cl− reversal potential is
close/equal to the resting potential. For the same reason,

the Cl− current through open GABAa channels does not
appear, if the membrane is at its resting potential.

A different case is GABAb receptors activation. This
causes K+ ions permeability. The outward K+ current
is able to hyperpolarize the membrane even below its
resting potential.

The remarkable difference between GABAa and
GABAb mediated inhibition is rather different kinetics
of the corresponding Cl− and K+ currents. Namely, ac-
cording to [24], the Cl− current rise time is 1–5 ms, and
the decay time constant is about 10–25 ms. The K+ cur-
rent rise time is 10–120 ms, and the decay time constant
is about 200–1600 ms. The K+ current can be even slow-
er, see [22,25,26].

Inspired by this contrast in the speed of Cl− and K+

transients, we idealize the Cl− current kinetics as having
infinitesimally short rise time and infinitely fast decay,
both can be achieved with infinitely large Cl− conduc-
tance at the moment of receiving inhibitory impulse. This
kind of the Cl− current kinetics does ensure the perfect
reset of the membrane voltage to the resting state at
the moment when an inhibitory impulse arrives. Within
the limited experimental data set available for inhibitory
autapses, see [24], a single impulse delivered through a
single synapse ensures only a partial reset. At this point,
our statement of the problem diverges from the current
data. At the same time, in the artificial neuromorphic
systems, see [6, 7], a complete reset may well be real-
ized. Considering a partial reset would inappropriately
increase the paper’s dimensions.

In the following, it is assumed that a neuron sends
back to itself its output impulses through a delayed feed-
back line, which ends with a GABAa autapse, see Prop1–
Prop3, in Sec. II B. This construction is stimulated with
a Poisson stream of excitatory input impulses. For this
configuration it has been proven in the previous paper [8]
for the case of a concrete neuronal model — the inhibito-

1Detailed description of the binding neuron model can be found in [9].
See also https://en.wikipedia.org/wiki/Binding_neuron.
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ry binding neuron1 with threshold 2 — that statistics of
its interspike intervals (ISIs) is essentially non-Markov2.
In paper [13], it has been proven for the Poisson input
and for a class of excitatory neuronal models that the
presence of delayed feedback makes their activity non-
Markov. In this paper, we use the approach developed
in [13] in order to refine and extend the methods of [8]
making them applicable to any inhibitory neuron with
fast Cl-type inhibition satisfying a number of simple and
natural conditions, see Cond0–Cond4, below. The stimu-
lation is assumed to be a Poisson stochastic process. Un-
der those conditions, we prove rigorously that ISI statis-
tics of a neuron with delayed fast Cl-type inhibitory feed-
back stimulated with a Poisson point stochastic process
of input impulses cannot be represented as a Markov
chain of any finite order. Finally, it should be mentioned
that our consideration is valid also for artificial hard-
ware neurons, see [27, 28], and abstract neurons used in
mathematical studies, provided that Cond0–Cond4 and
Prop1–Prop3, below, are satisfied.

II. DEFINITIONS AND
ASSUMPTIONS

A. Neuron without feedback

We assume that a neuron satisfies the following condi-
tions:

• Cond0: Neuron is deterministic: Identical stimuli
elicit identical spike trains from the same neuron.

• Cond1: Neuron is stimulated with a Poisson input
stationary stream of excitatory impulses.

• Cond2: Neuron may fire a spike only at the moment
when it receives an input impulse.

• Cond3: Immediately after firing, neuron appears in
its resting state.

• Cond4: The output interspike interval (ISI) distri-
bution can be characterized with a probability den-
sity function (pdf) p0(t), which is continuous with

p0(0) = 0, (1)

positive:

t > 0 ⇒ p0(t) > 0, (2)

and bounded:

sup
t>0

p0(t) < ∞. (3)

By t we denote the ISI’s length. Also, we im-
pose on the function p0(t) the following condition:
t < 0 ⇒ p0(t) = 0 in order to have it defined for
all real numbers.

These conditions are, with some modifications, similar
to those assumed in [13] for a class of excitatory neurons.
The modifications are as follows:

Cond3 — we assume that after firing a neuron appears
in its resting state with all excitation canceled, while
in [13] it is a standard state, which not necessarily is the
resting one.

Cond4 — the requirement of continuity of p0(t) is
added as compared to [13]. This addition has a pure
mathematical nature and seems to be valid for any
“good” neuronal model (without feedback). The subse-
quent proof of non-Markovianity relies on it.

The Cond3 above, limits the set of models as com-
pared to [13]. Namely, it claims that the standard state
of [13, Cond3] must be exactly the resting state of a
neuron. This requirement is imposed due to the specifics
of Cl-type fast inhibition. For our approach, it is im-
portant that after receiving an inhibitory impulse, the
neuron appears in exactly the same state as immediate-
ly after firing. And the state after receiving thetype in-
hibitory impulse can be only the resting state, see Sec.
I A, above. It seems that these conditions are satisfied for
many threshold-type neuronal models known in the liter-
ature, see [14–17] and citations therein. But this still has
to be proven by calculating corresponding p0(t). At least,
all the five conditions are satisfied for the binding neuron
model and for the basic leaky integrate-and-fire (LIF)
model, both for the Poisson stimulation. See [18, 19],
where p0(t) is calculated exactly for any of the two mod-
els mentioned, respectively.

B. Feedback line action

We expect that the feedback line satisfies Prop1, Prop2
of [13], which are reproduced below for completeness.
The Prop3 of [13] should be modified for the Cl-type
fast inhibition as shown below:

• Prop1: The time delay in the line is ∆ > 0.

• Prop2: The line is able to convey no more than one
impulse.

2Sometimes, a concept of a point stochastic Markov process is confused with a process whose consecutive realizations are
uncorrelated. Actually, the latter is a renewal process, which is a specific case of Markov process. As regards a general Markov
process, its realizations can well be correlated, see e.g. [10]. In this paper, we do not study the correlations (which itself is
an interesting topic, which could be addressed separately), but prove that the output statistics does not have the Markov
property as it is defined, e.g., in [11, Ch.2 §6]. Interesting remarks about the physics of non-Markovianity can be found in [12].
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• Prop3: The impulse conveyed to the neuronal input
is the fast Cl-type inhibitory impulse. This means
that after receiving such an impulse, the neuron
appears in its resting state. This is the only ac-
tion of the inhibitory impulse in the sense that it
has no influence on further neuronal states created
by next excitatory impulses. It does not affect the
neuron being in its resting state either.

Prop1 expects that the delay is always the same and
each impulse entering the line is delivered to its output
and effects the neuron. Thus, we do not consider here
cases when the transmission is unreliable, or the delay
time is not constant.

The validity of Prop2 depends on the relation between
the conduction velocity, recovery time and the line’s
length. Also Prop2 seems plausible if the firing frequency
is low.

Prop3 just characterizes a neuronal model as inhibito-
ry with GABAa-type autapse. Its validity depends on

the fact that the Cl− reversal potential is identical to the
resting potential. In some cases this is fulfilled, see [24].
It is also expected that a single action potential delivered
by a feedback line is potent enough for canceling any ex-
citation present. Taking into account that the observed
single GABAa IPSP peak value rare exceeds 6 mV, this
may require the delay line sprouting into several autaptic
endings.

The consequence of Prop2 above, important for us is
that at any moment of time the feedback line is either
empty, or conveys a single impulse. If it does convey an
impulse, then its state can be described with a stochas-
tic variable s, s ∈]0;∆], which further we call “time to
live”, see Fig. 1. The variable s denotes the exact time
required by the impulse to reach the output end of the
line, which is the neuron’s input for inhibitory impulses,
and to leave the line with the consequences described in
Prop3, above. Here, ∆ denotes the delay duration in the
feedback line. Notice, that at the beginning of any ISI,
the line is never empty.

✲

input stream

(Poisson)

neuron ✲

✛

✲
0
r ∆

r

s
r

✲

delayed feedback
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t

output stream
(non-Markov)

– ISI duration

Fig. 1. Neuron with delayed feedback. Neuron in the figure, stands for any neuronal model, which satisfies the set of
conditions Cond0–Cond4, above.

III. RESULTS

Let pinh(tn+1 | tn, . . . , t0) dtn+1 denote the condition-
al probability to get the duration of (n + 2)-nd ISI in
the interval [tn+1; tn+1 + dtn+1[ provided that previous
n+1 ISIs have duration tn, . . . , t0, respectively. From the
definition in [11, Ch.2 I6], one can obtain the necessary
condition

pinh(tn+1 | tn, . . . , t1, t0)
= pinh(tn+1 | tn, . . . , t1), (4)

required for the stochastic process {tj} to be nth order
Markov chain. Notice, that (4) must be satisfied for any
values of the variables ti, i = 0, . . . , n + 1.

Our purpose here is to prove the following Theorem3:

Theorem 1. A neuronal model satisfies conditions
Cond0–Cond4, above. Suppose that the model is extended
by introducing a delayed fast Cl-type inhibitory feedback
line, which satisfies the Prop1–Prop3, above. Then, in
the stationary regime, the output stream of ISIs of the
neuron cannot be presented as a Markov chain of any
finite order.

A. Proof outline

We intend to prove that relation (4) does not hold for
any n. For this purpose, we calculate exact expression
for pinh(tn+1 | tn, . . . , t0) as

pinh(tn+1 | tn, . . . , t0

=
pinh(tn+1, tn, . . . , t0)

pinh(tn, . . . , t0)
(5)

from which it will be clearly seen that the t0-dependence
in pinh(tn+1 | tn, . . . , t0) cannot be eliminated whatever
large the n is. In Eq. (5), expression pinh(tn, . . . , t0) de-
notes the joint probability density function to have n+1
consecutive ISIs {tn, . . . , t0} in a neuron with the fast
Cl-type inhibitory delayed feedback.

Let us introduce the conditional joint probability den-
sity pinh(tn+1, . . . , t0 | s), which denotes the condition-
al probability density to get n + 2 consecutive ISIs
{tn+1, . . . , t0} provided that at the beginning of the first

3A similar theorem for the excitatory feedback line has been proven in [13].
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ISI (t0) the time to live of the impulse in the feedback
line is equal to s. This conditional probability can be
used to calculate required joint pdfs as follows

pinh(tn+1, . . . , t0)

=

∆∫
0

pinh(tn+1, . . . , t0 | s)f inh(s) ds, (6)

where f inh(s) is the stationary pdf which describes the
distribution of times to live at the beginning of any ISI
in the stationary regime.

In what follows, we analyze the structure of functions
f inh(s) and pinh(tn+1, . . . , t0 | s). It appears that f inh(s)
has a singular component aδ(s − ∆) with a > 0, and
pinh(tn+1, . . . , t0 | s) has jump discontinuities at defi-
nite hyper-planes in the (n + 3)-dimensional space of
its variables (tn+1, . . . , t0, s). After integration in (6),
some of those discontinuities will survive in the (n + 2)-
dimensional space of variables (tn+1, . . . , t0), and exactly
one of those that survived has its position depending on
t0. The t0-dependent jump discontinuity will also sur-
vive in the pinh(tn+1 | tn, . . . , t0) for any n, provided
that tn, . . . , t0 satisfy the following condition:

n∑
i=0

ti < ∆, (7)

where ∆ > 0 is the full delay time in the feedback line.
Taking into account that the equation in the necessary
condition (4) must hold for any set of tn+1, . . . , t0, we
conclude that (4) cannot be satisfied for any n.

B. The proof

1. Structure of functions pinh(tn+1, . . . , t0 | s)

The specifics of the feedback line action together
with condition (7) results in a very simple structure of
pinh(tn+1, . . . , t0 | s) at different parts of the integration
domain in (6). Those parts are defined as follows:

Dk = {s |
k−1∑
i=0

ti < s ≤
k∑

i=0

ti},

k = 0, . . . , n,

Dn+1 = {s |
n∑

i=0

ti < s ≤ ∆}, .

As regards the structure itself, the following representa-
tion can be derived similarly as it was done in [13]:

pinh(tn+1, . . . , t0 | s)

= pinh(tn+1, . . . , tk+1 | ∆)

×pinh

(
tk | s−

k−1∑
i=0

ti

)
k−1∏
i=0

p0(ti),

s ∈ Dk, k = 0, . . . , n, (8)

pinh(tn+1, . . . , t0 | s)

= pinh

(
tn+1 | s−

n∑
i=0

ti

)
n∏

i=0

p0(ti),

s ∈ Dn+1. (9)

pinh(tn+1, . . . , tk+1 | ∆)

pinh

(
tn+1 | ∆−

n∑
i=k+1

ti

)
n∏

i=k+1

p0(ti). (10)

Here pinh(t | s) denotes the conditional pdf to get ISI
of duration t if at its beginning, the time to live of the
impulse in the feedback line is s.

The representation of pinh(tn+1, . . . , t0 | s) by means
of p0(t) and pinh(t | s) found here is similar to that found
in [13] for the excitatory case. But the structure of func-
tion pinh(t | s), used in that representation, is different.

2. Structure of function pinh(t | s)

Expect that at the beginning of an ISI, there is an im-
pulse in the feedback line with time to live s. Then the
probability that this ISI will have its duration t < s does
not depend on the feedback line presence. Therefore,

t < s ⇒ pinh(t | s) = p0(t). (11)

In the opposite situation, receiving of an ISI duration
greater than s happens if (i) the neuron is silent dur-
ing interval ]0; s[ and (ii) the neuron starts at its resting
state (Prop3, above) at the moment s and fires at t > s.
The realizations of events (i) and (ii) depend on disjoint
segments of the Poisson input stream (Cond1, above).
Therefore, (i) and (ii) are statistically independent. The
probability of (i) is as follows:

P0(s) = 1−
s∫

0

p0(t) dt. (12)

The probability of (ii) is p0(t− s). This gives for t > s

pinh(t | s) = P0(s)p0(t− s). (13)

It can be concluded from (11) and (13) that

lim
t↑s

pinh(t | s) = p0(s), lim
t↓s

pinh(t | s) = 0.

Now, taking into account (1) and (2) from Cond4, above,
we conclude that the function pinh(t | s) considered as
a function of two variables (t, s), t ≥ 0, s ∈ ]0;∆] has
a jump discontinuity along the straight line t = s. The
magnitude of this jump is p0(s), and it is strictly positive
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for positive t. Concrete values of pinh(t | s) along the line
t = s do not matter and can be chosen arbitrarily.

Finally, for pinh(t | s) we have4

pinh(t | s) = χ(s− t)p0(t) + P0(s)p0(t− s), (14)

where χ(s) is the Heaviside step function.

3. Structure of probability density function f inh(s)

Everywhere in this paper we expect that all pdfs
pinh(tn+1, . . . , t0) have achieved their stationary form,
and we analyze the stationary regime. But any stationary
regime arises from some initial distribution. In principle,
different initial distributions may result in different final
stationary distributions.

As can be concluded from (8)–(10), the only quanti-
ty, which might depend on the initial conditions in the
right-hand side of representation (6) is the pdf f inh(s).

Before the stationary regime is achieved, f inh(s) is
changed after each firing:

fn+1(s) =

∆∫
0

P(s | s′)fn(s′)ds′, (15)

where the transition function P(s | s′) gives the probabil-
ity density to find at the beginning of an ISI an impulse
in the line with time to live s provided that at the begin-
ning of the previous ISI, there was an impulse with time
to live s′. In the stationary regime, the pdf f(s) must
satisfy the following equation

f inh(s) =

∆∫
0

P(s | s′)f inh(s′)ds′, (16)

Now, the question of existence and uniqueness of the
stationary regime might be resolved by analyzing Eqs.
(15) and (16) for convergence and uniqueness. This is
expected to be done in another paper. In this paper we
assume that the sequence {f inh

n (s)} of pdfs generated by
Eq. (15) converges to some pdf for any initial f0(s), and
admit that there might be different limiting distributions
for different f0(s). The exact expression for P(s | s′) is
found in [13, Eqs.(11)–(13)]. It appears that the struc-
ture of f inh(s), which follows from (16) is exactly the
same as has been found in [13] for the excitatory case.
This structure is as follows5

f inh(s) = g(s) + aδ(s−∆), (17)

where a > 0 and g(s) is a bounded continuous function
vanishing out of interval ]0;∆[.

4. Forms of pinh(tn+1, . . . , t0) and pinh(tn, . . . , t0) after
integration in (6)

Let D =
n⋃

k=0

Dk. At D, representations (8) and (10)

are valid. Also at D, f inh(s) reduces to g(s). Therefore,∫
D

pinh(tn+1, . . . , t0 | s)f inh(s) ds

=
n∑

k=0

pinh

(
tn+1 | ∆−

n∑
i=k+1

ti

)
(18)

×
n∏

i = 0
i 6= k

p0(ti)
∫

Dk

pinh

tk | s−
k−1∑
j=0

tj

 g(s) ds.

The first factor (with fixed k, 0 ≤ k ≤ n) in the r.h.s. of
Eq. (18) is as follows:

pinh

(
tn+1 | ∆−

n∑
i=k+1

ti

)
.

Due to Eq. (14), this factor does have a jump disconti-

nuity along the hyperplane
n+1∑

i=k+1

ti = ∆ in the space of

variables (t0, . . . , tn+1). Notice, that the position of this
hyperplane does not depend on t0 for any k ∈ {0, . . . , n}.

The second factor in the r.h.s. of Eq. (18) is as follows:
n∏

i = 0
i 6= k

p0(ti), and it is continuous.

The third factor in the r.h.s. of Eq. (18) can be trans-
formed as follows:∫

Dk

pinh

tk | s−
k−1∑
j=0

tj

 g(s) ds

=

kP
j=0

tj∫
k−1P
j=0

tj

pinh

tk | s−
k−1∑
j=0

tj

 g(s) ds

=

tk∫
0

pinh(tk | s)g

s +
k−1∑
j=0

tj

 ds

=

tk∫
0

P0(s)p0(tk − s)g

s +
k−1∑
j=0

tj

 ds. (19)

4Compare this with [29, Eq. (11)], where pinh(t | s) is calculated exactly for the binding neuron model stimulated with a
Poisson stream.

5Compare this with [30, Eqs. (14)–(16)], where f(s) is calculated exactly for the binding neuron model.
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The last expression is continuous with respect to vari-
ables (t0, . . . , tn+1). Therefore, one can conclude that ex-
pression (18) does not have a jump discontinuity whose
position depends on t0.

Consider now the remaining part of the integral in (6).
With (9) taken into account one has:∫

Dn+1

pinh(tn+1, . . . , t0 | s)f inh(s) ds (20)

=
n∏

i=0

p0(ti)
∫

Dn+1

pinh

(
tn+1 | s−

n∑
i=0

ti

)
f inh(s) ds.

Here, the first factor,
n∏

i=0

p0(ti) is continuous and strictly

positive for positive ti. The second factor can be trans-
formed as follows:∫

Dn+1

pinh

(
tn+1 | s−

n∑
i=0

ti

)
f inh(s) ds

=

∆∫
nP

i=0
ti

pinh

(
tn+1 | s−

n∑
i=0

ti

)
f inh(s) ds

=

∆−
nP

i=0
ti∫

0

pinh(tn+1 | s)f inh

(
s +

n∑
i=0

ti

)
ds. (21)

Now, let us use representations (14) and (17) in or-
der to figure out which kind of discontinuities expression
(21) has. Due to (14) and (17), expression (21) will have
four terms. The first one is obtained by choosing the first
term both in (14) and (17):

A11 =

∆−
nP

i=0
ti∫

0

χ(s−tn+1)p0(tn+1)g

(
s +

n∑
i=0

ti

)
ds.

This term is either equal to zero, if tn+1 > ∆−
n∑

i=0

ti, or

otherwise transforms into a continuous function of vari-
ables (t0, . . . , tn+1). Moreover,

lim
tn+1↑∆−

nP
i=0

ti

A11(tn+1) = 0.

The second one is obtained by choosing the second
term in (14) and the first term in (17):

A21 =

∆−
nP

i=0
ti∫

0

P0(s)p0(tn+1 − s)g

(
s +

n∑
i=0

ti

)
ds.

This is also a continuous function of variables
(t0, . . . , tn+1).

The third one is obtained by choosing the first term in
(14) and the second term in (17):

A12 = a

∆−
nP

i=0
ti∫

0

χ(s− tn+1)p0(tn+1) (22)

×δ

(
n∑

i=0

ti + s−∆

)
ds = aχ

(
∆−

n+1∑
i=0

ti

)
p0(tn+1).

This term has a jump discontinuity along the hyperplane

n+1∑
i=0

ti = ∆ . (23)

The forth one is obtained by choosing the second term
in (14) and the second term in (17):

A22 = a

∆−
nP

i=0
ti∫

0

P0(s)p0(tn+1 − s)

× δ

(
n∑

i=0

ti + s−∆

)
ds =

= P0

(
∆−

n∑
i=0

ti

)
p0

(
n+1∑
i=0

ti −∆

)
.

This is also a continuous function of variables
(t0, . . . , tn+1).

After taking into account the above reasoning, we con-
clude that the required joint probability density has the
following form

pinh(tn+1, . . . , t0) = pw(tn+1, . . . , t0)

+aχ

(
∆−

n+1∑
i=0

ti

)
n+1∏
j=0

p0(tj), (24)

where function pw(tn+1, . . . , t0) does not have a jump
discontinuity depending on t0, and the second term in
(24) does have such a discontinuity along the hyperplane
(23).

Form of pinh(tn, . . . , t0) after integration

Assuming that (7) is satisfied we have similarly to (8),
(9)

pinh(tn, . . . , t0 | s) = pinh(tn, . . . , tk+1 | ∆)

×pinh

(
tk | s−

k−1∑
i=0

ti

)
k−1∏
i=0

p0(ti),

s ∈ Dk, k = 0, . . . , n− 1,
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pinh(tn, . . . , t0 | s) = pinh

(
tn | s−

n−1∑
i=0

ti

)
n−1∏
i=0

p0(ti),

s ∈ Dn.

Again due to (7), and in analogy with (10) instead of the
last two equations we have the following one:

pinh(tn, . . . , t0 | s) = pinh

(
tk | s−

k−1∑
i=0

ti

)
n∏

i = 0
i 6= k

p0(ti),

s ∈ Dk, k = 0, . . . , n. (25)

It is clear that the expression similar to (9) turns here
into the following

pinh(tn, . . . , t0 | s) =
n∏

i=0

p0(ti), s ∈ Dn+1. (26)

Now, due to (25), (26) we have

pinh(tn, . . . , t0) =

∆∫
0

pinh(tn, . . . , t0 | s)f inh(s) ds

=
n∑

k=0

n∏
i = 0
i 6= k

p0(ti)
∫

Dk

pinh

(
tk | s−

k−1∑
i=0

ti

)
g(s)ds

+
n∏

i=0

p0(ti)
∫

Dn+1

f inh(s)ds. (27)

From calculations similar to those made in Eq. (19) it
can be concluded that pinh(tn, . . . , t0) is continuous at
the domain defined by (7).

5. t0-dependence cannot be eliminated in
pinh(tn+1 | tn, . . . , t0)

Now, with representations (24) for pinh(tn+1, . . . , t0)
and (27) for pinh(tn, . . . , t0) we can pose a question about
the form of pinh(tn+1 | tn, . . . , t0). The latter can be
found as defined in (5). First of all, notice that due to
(27) and Cond4, pinh(tn, . . . , t0) is strictly positive for
positive ISIs. This allows us to use it as denominator
in definition (5). Second, it can be further concluded
from (27) and Cond4 that pinh(tn, . . . , t0) is bounded.
The latter together with the continuity of pinh(tn, . . . , t0)
means that any discontinuity of jump type present in
pinh(tn+1, . . . , t0) appears also in pinh(tn+1 | tn, . . . , t0).
It follows from the above and from the Eq. (24) that the
conditional pdf pinh(tn+1 | tn, . . . , t0) can be represented
in the following form:

pinh(tn+1 | tn, . . . , t0)

= pw(tn+1 | tn, . . . , t0)

+Z(tn+1, . . . , t0)χ

(
∆−

n+1∑
i=0

ti

)
, (28)

where pw(tn+1 | tn, . . . , t0) does not have any jump
type discontinuity whose position depends on t0, and
Z(tn+1, . . . , t0) is a strictly positive function:

Z(tn+1, . . . , t0) =
a

n+1∏
i=0

p0(ti)

p(tn, . . . , t0)
.

The second summand in (28) thus has a jump discontinu-
ity, whose position depends on t0 and this discontinuity
cannot be counterbalanced by the terms accumulated in
the first summand. Therefore, representation (28) proves
that for any n, conditional pdf pinh(tn+1 | tn, . . . , t0) does
depend on t0 (the second term in (28)) and this depen-
dence cannot be eliminated.

See also Appendix below, where the above general rea-
soning is illustrated for the LIF neuronal model with
threshold 2 (that is two input impulses applied in a short
succession are able to trigger, see (31), below).

IV. DISCUSSION AND CONCLUSIONS

The question as to what extent the stream of neuronal
output impulses can be modeled as a Poisson stream has
been discussed in neurophysics, see [31]. The experimen-
tally observed presence of memory in the ISIs output of
real neurons has been reported many times, see [32–36].
Also several theoretical models of how the memory could
appear are offered, see [15,37–41,43].

In this paper, we use the quantal approach as it is de-
fined in [1] in order to prove that the Markov property
is broken in the ISI output stream of a neuronal model
belonging to a defined class of models equipped with de-
layed fast Cl-type inhibitory feedback, which is stimulat-
ed with a Poisson stochastic process of excitatory input
impulses. The Theorem proven (see page 3) claims that
in a normal biophysical construction, one may not expect
even a renewal, let alone a Poisson type of activity. Sever-
al previous results obtained in the quantal approach are
used in this paper. The first results this paper is ground-
ed on are obtained for the binding neuron (BN) model.
Namely, in [18] under Poisson stimulation the output ISI
pdf and mean ISI are obtained for the BN without feed-
back and with threshold (Th) 2, and the mean ISI for
Th = 3. In [8,29,30] a BN model with Th = 2 and with
delayed feedback, either excitatory or inhibitory, stimu-
lated with a Poisson stream is considered. For this case,
the ISI pdf is found and also it is proven that the output
ISI stream is non-Markov. In [13], any neuronal model
from a defined class is considered. A delayed feedback is
assumed excitatory, and stimulation is Poissonian. For
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this case, it is proven that the output stream is non-
Markov. In this paper, a class of neuronal models with
delayed Cl-type inhibitory feedback is considered.

The memory property in output ISI streams is of-
ten discussed in terms of correlation coefficient (CC),
e.g. [42]. Unfortunately, the expressions obtained in this
paper cannot be used for conclusions made in terms of
CC. This is because all expressions, including p(t1, t0)
are obtained under restriction (7), whereas in order to
calculate CC one needs to know p(t1, t0) for all t0 > 0,
t1 > 0. Nevertheless, expressions derived in this paper
under restriction (7) allow one to show that the Markov
property is broken in the output ISI due to delayed feed-
back. Another reason why neuronal activity in a network
is non-Markov is offered in [43].

In further work, it is expected to extend the exact ex-

pressions obtained here to the full range of ISI values and
to compare our findings with those obtained in terms of
CC. This includes also a quantitative estimation of how
much the statistics is non-Markov and to what extent
it might be approximated by a Markov/renewal process.
Also, a general renewal stochastic process can be consid-
ered as a stimulus instead of a Poisson one. The latter
can be achieved if one finds an adequate expression for
Eq. (13), which in its current form is valid for Poisson
stimulation only.

Acknowledgements. This research was supported by
theme grant of Department of Physics and Astronomy
of NAS of Ukraine: “Dynamics of formation of spatial-
ly non-uniform structures in many-body systems”, PK
0118U003535.

APPENDIX

Here we give a simple example of the proven property. Namely, we consider pinh(t2 | t1, t0) and show that t0-
dependence cannot be eliminated for a LIF model stimulated with a Poisson stream, see Fig. 2 below.

For the two values of n = 1, 2, Eq. (6), due to (7), (14), (18)–(20), (27), turns into the following two equations:

pinh(t1, t0) = p0(t1)

t0∫
0

P0(s)p0(t0 − s)g(s) ds + p0(t0)

t1∫
0

P0(s)p0(t1 − s)g(s + t0) ds

+ p0(t1)p0(t0)

∆−t0−t1∫
0

f(s + t0 + t1) ds, (29)

pinh(t2, t1, t0) = pinh(t2 | ∆− t1)p0(t1)

t0∫
0

P0(s)p0(t0 − s)g(s) ds

+ pinh(t2 | ∆)p0(t0)

t1∫
0

P0(s)p0(t1 − s)g(s + t0) ds

+ p0(t1)p0(t0)

∆−t0−t1∫
0

pinh(t2 | s)f(s + t0 + t1) ds, (30)

Now, let the neuronal model be the basic LIF model characterized with the firing threshold V0, input impulse
height h and relaxation time τ . Assume that

0 < h < V0 < 2h. (31)

Assume also that the neuron is stimulated with a Poisson stream of intensity λ. For this case, it is proven in ( [19, Eqs.
(14),(21)] that

p0(t) = λ2te−λt, provided t ∈ [0;T2], where T2 = τ log(h/(V0 − h)). (32)

Assume, for simplicity, that ∆ < T2. This allows to obtain exact expressions for P0(s) and pinh(t | s):

P0(s) = e−λs(λs + 1), (33)

pinh(t | s) = λ2e−λt(tχ(s− t) + χ(t− s)(t− s)(λs + 1)).
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If we put χ(0) = 0.5, then χ(−x) = 1− χ(x) and the last expression can be transformed as follows

pinh(t | s) = λ2e−λt(t + χ(t− s)s(λ(t− s)− 1)). (34)

Under the assumptions of this Appendix, it appears that the kernel of integral equation (16) above is exactly the
same as for the binding neuron model with excitatory feedback. The latter case has been studied in [30, Eqs. (14)–
(16)], where the unique solution to Eq. (16) is found. The unknown quantities from Eq. (17) above under assumptions
of this Appendix can be taken from [30]:

g(s) = aλ
(
1− e−2λ(∆−s)

)
/2, a = 4e2λ∆/

(
(2λ∆ + 3)e2λ∆ + 1

)
. (35)

After substituting (32)–(35) into (29) one obtains

pinh(t1, t0) =
λ4e−λ(t0+t1)t0t1

6((2λ∆ + 3)e2λ∆ + 1)

×
(
2λe2λ∆(λ(t20 + t21) + 3(2∆− t0 − t1)) + 3(e2λ(t1+t0) + 6e2λ∆ + 1)

)
. (36)

Notice, that pinh(t1, t0) is strictly positive for strictly positive t1, t0. This allows one to use it safely as denominator
in the definition of conditional probability (5) above. Also, as it may be observed from (36), pinh(t1, t0) is continuous
and bounded. This means that pinh(t2 | t1, t0), as it is defined in (5), will preserve any discontinuity which may
appear in pinh(t2, t1, t0), which is the numerator in (5) for n = 1.

Consider now Eq.(30) for pinh(t2, t1, t0). After partial simplifications, it turns into the following:

pinh(t2, t1, t0) = pinh(t2 | ∆− t1)
λ4t0t1e

−λ(t0+t1)

6((2λ∆ + 3)e2λ∆ + 1)
(
3
(
1− e2λt0

)
+ 2λt0e

2λ∆(λt0 + 3)
)

(a)

+pinh(t2 | ∆)
λ4t0t1e

−λ(t0+t1)

6((2λ∆ + 3)e2λ∆ + 1)
(
3e2λt0

(
1− e2λt1

)
+ 2λt1e

2λ∆(λt1 + 3)
)

(b)

+λ2t2e
−λt2p0(t1)p0(t0)χ(∆− t0 − t1 − t2)

∆−t0−t1∫
t2

g(s + t0 + t1) ds (c)

+λ2e−λt2p0(t1)p0(t0)

min(t2,∆−t0−t1)∫
0

(t2 − s)(λs + 1)g(s + t0 + t1) ds (d)

+ a p0(t1)p0(t0)pinh(t2 | ∆− t0 − t1). (37)

The summands (a) and (b) in Eq. (37) correspond to the first and second term of the right-hand side in Eq.(30),
respectivly. The remaining three correspond to the third term of the right-hand side in Eq. (30). It is easily seen that
both (a) and (b) are continuous with respect to t0. Term (d) is also continuous in t0, because function min(x, y) is
continuous on x and y. Term (c) is also continuous because

lim
∆−t0−t1−t2→0

χ(∆− t0 − t1 − t2)

∆−t0−t1∫
t2

g(s + t0 + t1) ds = 0.

Consider the final term in Eq. (37). For the sake of clarity, we omit the factor a p0(t1)p0(t0), having in mind that it
is continuous and strictly positive for t0 > 0, t1 > 0. The remaining expression is as follows

λ2e−λt2(t2 − χ(t2 + t1 + t0 −∆)(∆− t0 − t1)(λ(∆− t0 − t1 − t2) + 1)). (38)
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Fig. 2. Different values of pinh(t2 | t1, t0) for different t0. Here ∆ = 7 ms, λ = 0.3 ms−1, t1 = 3 ms both for (a) and (b).
Time t0 = 3.5 ms for (a) and t0 = 1.5 ms for (b). The curves are calculated based on Eqs. (34)–(37).

This expression, if considered as a function of t0, t1, t2, has a step-like discontinuity along the hyperplane

t2 + t1 + t0 = ∆. (39)

Indeed, if t2 + t1 + t0 < ∆, then (38) turns into λ2e−λt2t2. Otherwise, if t2 + t1 + t0 > ∆, then (38) turns into
λ2e−λt2(t2 − (∆− t0 − t1)(λ(∆− t0 − t1 − t2) + 1)). The difference between the two expressions is as follows

λ2e−λt2(∆− t0 − t1)(λ(∆− t0 − t1 − t2) + 1). (40)

This difference vanishes along the hyperplane t2 + t1 + t0 = ∆ + 1
λ only. (Due to (7), we do not consider the case

t0+t1 = ∆). Comparing the last equation with (39), we see that the jump (40) is strictly positive along the hyperplane
(39). The same is valid for the last term in (37). Taking into account that the other four terms in (37) are continuous
in t0, and what is said after Eq. (36), we conclude that pinh(t2 | t1, t0) has a nonzero jump along the hyperplane (39).
For a fixed t1, t2 and infinitesimally small ε > 0 consider two different values of t0: t±0 = ∆ − t1 − t2 ± ε. It is clear
from the above that when t0 value obtains an infinitesimally small change from t+0 to t−0 , function pinh(t2 | t1, t0)
gets a finite change due to the jump (40), which means that t0-dependence in pinh(t2 | t1, t0) is indeed present (at
least due to the discovered jump discontinuity) and cannot be eliminated. This is illustrated in Fig. 2.
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СТАТИСТИКА ВИХIДНОЇ АКТИВНОСТI ГАЛЬМIВНОГО НЕЙРОНА ЗI
ШВИДКИМ, Cl-ПОДIБНИМ ГАЛЬМУВАННЯМ I З ЗАТРИМАНИМ ЗВОРОТНIМ

ЗВ’ЯЗКОМ — НЕМАРКIВСЬКА
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Для класу моделей iмпульсних нейронiв гальмiвного типу зi швидким, Cl-подiбним гальмуванням i з за-
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