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Abstract—It is known that selectivity of an olfactory projection
neuron is better than that of receptor ones converging on
it. Under high odor concentration, the selectivity is improved
due to lateral inhibition mechanism in the olfactory bulb. This
mechanism does not work at low concentrations.

We propose an original mechanism which could improve
selectivity at low concentration of odors, which is based on the
stochastic nature of stimuli obtained by a projection neuron
from the receptor ones. The mechanism operates at the level
of communication from receptor neurons to a projection neuron,
and does not require involvement of other bulbar neurons.

As a projection neuron model we use one described by the
Korolyuk, Kostyuk, Pjatigoskii, Tkachenko. In this model, the
membrane electrical leakage is modeled by spontaneous random
decay of each input impulse, which is kept unchanged until the
decay.

We analyze the neuron’s triggering process due to stochastic
stimulation from receptor neurons by exactly calculating the
mean interspike interval for the projection neuron. This allows
to compare selectivity of projection neuron with that of receptor
neurons converging on it.

Exact mathematical expression is obtained for the selectivity
gain in projection neurons as compared to that in the receptor
ones. A possibility of high gain at low odor concentration is
predicted based on the expression obtained.

The stochastic nature of communication from receptor to
projection neurons causes selectivity improvement in the projec-
tion ones at low odor concentration, when the lateral inhibition
mechanism in the olfactory bulb does not work.

I. INTRODUCTION

A higher selectivity of the olfactory projection neurons
(PN), as compared to that of the receptor ones, has been
discussed many times, see e.g. [1]. Lateral inhibition has been
proposed as a sole mechanism explaining the higher selec-
tivity of PNs [2]. This mechanism requires communication
between several projection neurons which involves activity of
granular cells, which are inhibitory. At low odor concentration,
inhibitory activity in the olfactory bulb is either absent or
quite low, see [1], which makes lateral inhibition inefficient.
In our paper, a different mechanism is proposed, which is
based exclusively on the electrical leakage through the PN’s
membrane, on the stochastic nature of the stimuli received
by PNs from the receptor neurons and on the threshold-type
reaction to those stimuli. This mechanism does not depend on
the lateral inhibition and is capable of functioning at low odor
concentrations.

II. METHODS

A. Selectivity gain definition
We define selectivity in a receptor neuron as follows. If

two odors, O and O’ are presented to a receptor neuron (RN)
in two separate experiments at equal concentrations, then it
may so happen that the RN’s output firing rates λrn, λ′rn will
be different. This means that this RN is able to discriminate
between these two odors. Expect λ′rn = λrn + ∆λrn, where
∆λrn > 0. We define selectivity of that RN with respect to
those two odors as s = ∆λrn/λrn. A large number of RNs
expressing the same receptor protein converge onto a single
projection neuron. The compound stimulation rate of the PN
is λtot = Nλrn, where N — is the total number of RNs
converging on a single PN (N is up to 5000 and more, [3]). If
so then the PN’s firing rate for those two odors will be different
as well: λ′pn = λpn + ∆λpn. We define selectivity of that
PN with respect to those two odors as S = ∆λpn/λpn. The
selectivity gain, g, can be now defined as follows: g = S/s.
Taking into account the s and S definitions, the latter can be
represented as a derivative:

g =
λrn
λpn

d λpn
d λrn

. (1)

B. Projection neuron model
As it can be seen from (1), in order to calculate the

selectivity gain one has to know how does the λpn depend
on the λrn. The required dependence can be found based
on a PN’s model. We choose here the KKPT model named
after its authors [4]. In this model, any input impulse stays
unchanged for some random period of time, after which it
disappears. The living times distribution is exponential with
constant µ. This model satisfactory describes the membrane
electric leakage if the input impulses are small as compared
to the triggering depolarization level, see Fig. 1. At the
same time, this model, if stimulated with Poisson stochastic
process, has purely stochastic dynamics. This is in the contrast
to standard leaky integrate-and-fire model, where input is
stochastic whereas depolarization decay is deterministic. Due
to this mixt of two types of dynamics standard leaky integrate-
and-fire model appears to be less suitable for calculations.

III. RESULTS

The pure stochastic nature of the KKPT model allows for
calculating exactly the mean waiting time between two con-
secutive output impulses, To. For this purpose, e.g., formula
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Fig. 1. Modeling deterministic exponential decay of membrane depolarization due to electric leakage with KKPT model of stochastically decaying input
impulses. V0 — is the firing threshold voltage, h — is the height of input impulse. The dashed line shows the true exponential decay. Other three curves
represent realizations of stochastic decay of impulses received earlier. Here µ = 1/τ , where τ — is the PN’s membrane time constant. Notice the better
approximation for smaller input impulses.

(1.69) from [5] can be used. The resulting expression is as
follows:

To =
1

λtot

∑
0≤l≤N0−1

∑
0≤k≤l

l!

k!

(
µ

λtot

)l−k
. (2)

Here N0 – is the firing threshold expresed as the minimal
number of input impulses able to trigger a spike. Taking into
account that λpn = 1/To, Eq. (1) can be rewritten as follows:

g = −λin
To

d To
d λin

. (3)

Using (2) in (3) one obtains after transformations:

g = 1 +

∑N0−1
j=0

j
j+1

(
µ

Nλrn

)j
1

(N0−j−1)!∑N0−1
j=0

1
j+1

(
µ

Nλrn

)j
1

(N0−j−1)!

. (4)

This expression can be analyzed for several limiting cases.
First, expect there is no leakage in the PN. This is so called
“perfect integrator” case which is characterized with µ = 0.
In this case, g = 1, — no selectivity gain. Second, consider
case of high odor concentration. This is characterized with
λrn → ∞. In this case, again, g = 1, — no selectivity gain.
Third, consider case of low odor concentration. In this case
λrn is small. It can be proven that

lim
λrn→0

g(λrn) = N0, (5)

where g(λrn) is given by Eq. (4). Taking into account that
N0 = 300 — 500 for a PN, we see from (5) that selectivity
gain in PN can be fairly large at low odor concentrations. Data
taken from experimental literature and used in (4) give for g
value about 30. It also can be proven that g(λrn) decreases
with increasing λrn.

IV. CONCLUSIONS

In our paper, a mechanism has been proposed for improving
selectivity in olfactory projection neurons as compared to the
receptor neurons, which operates at low odor concentrations.
This mechanism does not depend on the lateral inhibition. A

coefficient of the selectivity gain, g, is defined in order to
get a quantitative description. The coefficient of selectivity
gain is characterized by the following. There is no selectivity
gain (g = 1), if a secondary neuron is triggered by each
single input impulse (N0 = 1). This is, however, not the
case for PNs, where up to several hundreds of input impulses
from the receptor neurons, delivered within a narrow time
window, are necessary for triggering. The selectivity gain
increases with increasing triggering threshold. Also, there is
no gain if the electrical leakage is absent. With decreasing
odor concentration the selectivity gain due to the mechanism
proposed increases. This kind of behavior has been observed
experimentally when odors were applied from low concentra-
tion range, [6]. See also [7] where a similar mechanism is
discussed in connection with adsorption-desorption noise.
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