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Abstract. A binding neuron (BN) with delayed feedback is considered. The neuron is fed externally with
a Poisson stream of intensity λ. The neuron’s output spikes are fed back into its input with time delay Δ.
The resulting output stream of the BN is not Poissonian. The main purpose of this paper is to find
interspike intervals (ISI) distribution of the output stream. For BN with threshold 2 the exact mathematical
expressions as functions of λ, Δ and BN’s internal memory, τ are derived for the ISI distribution and
coefficient of variation. For higher thresholds these quantities are found numerically. The distributions
found are characterized with jumps, derivative discontinuities and include singularity of Dirac’s δ-function
type. The ISI coefficient of variation found is a unimodal function of input intensity, with the maximum
value considerably bigger than unity. It is concluded that delayed feedback presence can radically alter
neuronal output firing statistics.

PACS. 87.19.ll Models of single neurons and networks – 87.10.-e General theory and mathematical
aspects – 87.10.Ca Analytical theories – 87.10.Mn Stochastic modeling

1 Introduction

The role of input spikes timing in functioning of either sin-
gle neuron, or neural net has been addressed many times,
as it constitutes one of the main problem in neural coding.
The role of timing was observed in processes of percep-
tion [15], memory [8], objects binding and/or segmenta-
tion [6]. At the same time, where does the timing come
from initially? In reality, some timing can be inherited
from the external world during primary sensory reception.
In auditory system, this happens for the evident reason
that the physical signal, the air pressure time course, it-
self has pronounced temporal structure in the millisecond
time scale, which is retained to a great extent in the in-
ner hair cells output [5,7,17]. In olfaction, the physical
signal is produced by means of adsorption-desorption of
odor molecules, which is driven by Brownian motion. In
this case, the primary sensory signal can be represented as
Poisson stream, thus not having any remarkable temporal
structure.

Nevertheless, temporal structure can appear in the
output of a neuron fed by a structureless signal. After
primary reception, the output of corresponding receptor
cells is further processed in primary sensory pathways,
and then in higher brain areas. During this processing,
statistics of poststimulus spiking activity undergoes sub-
stantial transformations (see, e.g. [7]). After these trans-
formations, the eventual activity is far away from the ini-
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tial one. This process is closely related to the information
condensation [11].

We now put a question: what kind of physical mech-
anisms might underlie these transformations? It seems
that, among others, the following features are responsi-
ble for spiking statistics of a neuron in a network: (i) sev-
eral input spikes are necessary for a neuron from a higher
brain area to fire an output spike (see, e.g. [1]); (ii) a
neural net has numerous interconnections, which bring
about feedback and reverberating dynamics in the net.
Due to (i) a neuron must integrate over a time interval
in order to gather enough input impulses to fire. As a
result, in contrast to Poisson stream, the shortest ISIs be-
tween output spikes will no longer be the most probable.
This was observed long ago [20] in numerical experiments
with leaky integrate-and-fire (LIF) neuronal model and
confirmed recently in exact mathematical derivation for
binding neuron [25]. Due to reverberation, an individual
neuron’s output impulses can have some delayed influence
on the input of that same neuron. This can be the source of
positive feedback which results in establishing of dynamics
partially independent of the stimulating input (compare
with [11]), and which governs neuronal spiking statistics.

To test influence of (i), (ii) above, on neuronal firing
statistics, in this paper we consider a simplest possibil-
ity, namely, the single neuron with feedback. The feed-
back line is the excitatory one. As neuronal model we
take the binding neuron (BN) one. Exact mathematical
expression is derived for output ISI distribution as a func-
tion of input Poisson stream intensity, λ, BN’s internal
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Fig. 1. Binding neuron with feedback (see [24] for deatils). τ
is similar to the “tolerance interval” discussed in ([14], p. 42).
Multiple input lines with Poisson streams are joined into a
single one here.

memory, τ , delay value in the feedback line, Δ, when BN
has threshold 2. For higher thresholds the distributions
are calculated numerically, by means of Monte Carlo al-
gorithm. The distributions found are characterized with
discontinuities of jump type, and include singularity of
Dirac δ-function type. It is concluded that delayed feed-
back presence can radically alter neuronal output firing
statistics.

2 BN without feedback

The binding neuron model [24] is inspired by numerical
simulation of Hodgkin-Huxley-type point neuron [23], as
well as by the leaky integrate-and-fire (LIF) model [20].
In the binding neuron, the trace of an input is remem-
bered for a fixed period of time after which it disappears
completely. This is in the contrast to the above two mod-
els, where the postsynaptic potentials decay exponentially
and can be forgotten only after triggering. The finiteness
of memory in the binding neuron allows one to construct
fast recurrent networks for computer modeling as well as
obtain exact mathematical conclusions concerning firing
statistics of BN. Recently, the finiteness is utilized for
exact mathematical description of the output stochastic
process if the binding neuron is driven with the Poisson
input stream in the case of no feedback [25] and for BN
with instantaneous feedback [27].

The BN works as follows (see Fig. 1 with the feedback
line removed). All input impulses are excitatory and have
the same magnitude. Each one of them is stored in the
BN for a fixed period of time, τ , and then is forgotten.
When the number of stored impulses, Σ, becomes equal
to the BN’s threshold, N0, the BN fires output spike, clears
its internal memory, and is ready to receive fresh inputs.
Normally, any neuron has a number of input lines. If input
stream in each line is Poisson and all lines have the same
weight, all of them can be joined into a single one, like in
Figure 1, with intensity, λ, equal to the sum of intensities
in the individual lines.

In the case of no feedback the output statistics was
calculated for this model with N0 = 2 (see [25,26] for de-
tails). ISI probability density function, P 0(t), where t > 0
denotes the output ISI duration, was obtained as

mτ ≤ t ≤ (m+1)τ ⇒ P 0(t) = ym(t), m = 0, 1, . . . ,
(1)

where yi(t) are defined according to the following recur-
rent relation:

yi(t) = yi−1(t) +
λi+2

(i + 1)!
(t − iτ)i+1e−λt

− λi+1

i!
(t − iτ)ie−λt,

y0(t) = e−λtλ2 t, i = 0, 1, . . . , t > 0. (2)

The first moment, W1, of the distribution (1) was found as

W1 ≡
∫ ∞

0

t P 0(t) dt =
1
λ

(
2 +

1
eλτ − 1

)
, (3)

which will be used later.

3 Derivation outline

In this work we assume, that time delay Δ of impulse in
the feedback line is smaller than the BN’s memory dura-
tion, τ . It allows to make analytical expressions shorter
and is consistent with the case of direct feedback, not me-
diated by other neurons.

Any output impulse of BN with feedback line may be
produced either with impulse from the line involved, or
not. We assume that, just after firing and sending out-
put impulse, the line is never empty. This assumption is
selfevident for output impulses produced without impulse
from the line, or if the impulse from the line was involved,
but entered empty neuron. In the letter case, the second
(triggering) impulse comes from the Poisson stream, neu-
ron fires and output impulse goes out as well as enters the
empty line. On the other hand, if impulse from the line
triggers BN, which already keeps one impulse from the in-
put stream, it may be questionable if the output impulse
is able to enter the line, which was just filled with the im-
pulse. We expect it does. This means biologically that we
ignore the refraction time – a short period necessary for
a nervous fiber to recover from conducting previous spike
before it is able to serve for the next one. Thus, at the
beginning of any output ISI, the line keeps impulse with
time to live s, where s ∈]0; Δ].

It is clear, that variability of the input Poisson stream
should be combined with the variability in s value in order
to calculate the output stream properties, like ISI proba-
bility density PΔ(t). As a first step, we define an auxiliary
probability density, PΔ

s (t), in which the s is put fixed at
the beginning of any output ISI. Thus, instead of con-
sidering a stationary firing process in which both firing
moments and s are determined by the input Poisson pro-
cess, we consider a process in which, after each firing, the
line keeps impulse with time to live equal s ∈]0; Δ].

In order to find an explicit expression for PΔ
s (t) differ-

ent domains for t, s and τ were considered separately (see
Appendix A.1 for details). Finally it was found that the
function PΔ

s (t) can be written as a sum of singular and
regular parts:

PΔ
s (t) = PΔr

s (t) + PΔs
s (t), (4)
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where

PΔs
s (t) = e−λsλs δ(t − s), (5)

PΔr
s (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−λttλ2, t ∈]0; s], (∗∗)

λ e−λt, t ∈]s; s + τ ], (∗)

e−λ(τ+s)P 0(t − s − τ), s + τ ≤ t (∗),
(6)

where assumption Δ < τ is taken into account.
When initial data is forgotten, the firing process of

BN with delayed feedback becomes stationary. This brings
about a stationary distribution, f(s), for time to live,
s ∈]0; Δ], of an impulse in the feedback line at the mo-
ment of beginning of any output ISI. Having exact ex-
pression for f(s), one could calculate required output ISI
distribution as follows:

PΔ(t) =
∫ Δ

0

PΔ
s (t)f(s) ds. (7)

In order to find f(s), consider the transition probabilities
P (s | s′), s, s′ ∈]0; Δ], which give probability that at the
beginning of some output ISI, the line has impulse with
time to live s, provided that at the beginning of the previ-
ous ISI it had impulse with time to live s′. P (s | s′) can be
found based on known expression for PΔ

s (t). f(s) is then
found as normed to 1 solution of the following equation:

∫ Δ

0

P (s | s′) f(s′) ds′ = f(s). (8)

In Appendix A.2 P (s | s′) is obtained as a sum of two
functions

P (s | s′) = P1(s, s′) + P2(s, s′), (9)

where

P1(s, s′) =

{
e−λ(s′−s)λ2(s′ − s), s < s′ ∈]0; Δ],
0, s ≥ s′,

P2(s, s′) = δ(s − Δ)
(
λ s′ e−λ s′

+ e−λ s′)
.

The transition probability P (s | s′) is normed:
∫ Δ

0
P (s |

s′) ds = 1.
Substituting (9) to (8) and solving the obtained equa-

tion one obtains for f(s) (see Appendix A.3 for details):

f(s) = a δ(s − Δ) + g(s), (10)

where a is a dimensionless constant (see Eq. (33)) and g(s)
is the function, given by equation (32), which vanishes out
of interval ]0;Δ]. a gives the probability to find the impulse
in the feedback line with time to live Δ at the beginning of
arbitrary ISI. And g(s) gives the probability distribution
for s < Δ.

Fig. 2. Domains of t used for calculating integral in (11).

4 ISI distribution

For calculating PΔ(t) substitute (4)–(6) and (10) into
equation (7). This gives

PΔ(t) = e−λtλt · aδ(t − Δ)

+ e−λtλtg(t) + aPΔr
Δ (t) +

∫ Δ

0

PΔr
s (t)g(s)ds.

(11)

Further transformation of (11) depends on the domain,
the t belongs to. Basic domains of t are shown in Figure 2.

Consider case A. Here integration domain, s ∈]0; Δ],
should be split into two with point s = t. This gives

PΔ(t) = e−λtλtg(t) + aλ2te−λt

+
∫ t

0

λe−λt g(s) ds +
∫ Δ

t

λ2te−λt g(s) ds,

which after transformations becomes

PΔ(t) =
λ e−λt

(2 λΔ + 3) e2 λΔ + 1

(
(2 λΔ + 7)λt e2λΔ

+ 1 − (λt + 1)e2λt − 2 λ2 t2 e2 λΔ
)
, t < Δ.

(12)

It can be seen from (11), that ISI distribution PΔ(t) has
δ-function type singularity at t = Δ:

PΔ(t) =
4 λΔeλΔ

(2λΔ + 3) e2λΔ + 1
δ(t−Δ), t ∈]Δ− ε; Δ+ ε[.

(13)
Consider case B. Here integration in (11) can be performed
over the entire domain ]0; Δ[ uniformly, which gives

PΔ(t) = e−λtλ

∫ Δ

0

f(s) ds = e−λtλ, Δ < t < τ. (14)

Consider case C. Here integration domain should be split
into two with point s = t−τ , and equation (11) turns into
the following:

PΔ(t) =
∫ t−τ

0

e−λ(τ+s)P 0(t − s − τ)g(s) ds

+ e−λtλ

Δ∫

t−τ

g(s) ds + a e−λtλ.

Here in the first integral (t− s − τ) ∈ [0; t− τ ] ⊂ [0; Δ] ⊂
[0; τ ]. This allows to identify from equations (1) and (2)
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exact expression for P 0(t− s− τ), which is y0(t− s− τ) =
e−λ(t−s−τ)λ2(t − s − τ):

PΔ(t) =
∫ t−τ

0

e−λtλ2(t − s − τ)g(s) ds

+ e−λtλ

Δ∫

t−τ

g(s) ds + a e−λtλ.

After transformations, one obtains

PΔ(t) =
(K0+K1t+K2t

2+e2λ(t−τ))λe−λt

(4λΔ + 6) e2λΔ + 2
, τ <t<Δ+τ,

(15)
where

K0 =
(
2λ2τ2 + 4λτ + 4λΔ + 6

)
e2λΔ − 2λτ + 1,

K1 =
(
2 − 4e2 λΔ(1 + λτ)

)
λ, K2 = 2 λ2 e2 λΔ.

Consider case D. Here equation (11) turns into the follow-
ing:

PΔ(t) = a e−λ(τ+Δ)P 0(t − Δ − τ)

+
∫ Δ

0

e−λ(τ+s)P 0(t − s − τ)g(s) ds.

Let us introduce a new variable of integration, u = t−s−τ :

PΔ(t) = a e−λ(τ+Δ)P 0(t − Δ − τ)

+
∫ t−τ

t−Δ−τ

e−λ(t−u)P 0(u)g(t − τ − u) du. (16)

From this expression we see, that for calculating the in-
tegral one needs to use equation (1) either with single, or
with two consecutive values of m. Namely, if for some m:
mτ ≤ t−Δ− τ < t− τ ≤ (m + 1)τ , then one should sub-
stitute ym(t) from (2), corresponding to that m, instead
of P 0(u) in the (16). In the opposite situation, there exist
such m, that mτ < t−Δ−τ < (m+1)τ < t−τ . In this case,
domain of integration in equation (16) should be split with
point (m+1)τ , and as P 0(u) one should substitute either
ym(t), or ym+1(t). Thus, if t ∈ [Δ + τ ;∞[, then all possi-
ble situations are parameterized with the above mentioned
number m in such a way that if t ∈ [Δ+(m+1)τ ; (m+2)τ ],
then use ym(t) from (2), and if t ∈](m+2)τ ; Δ+(m+2)τ [,
then split integration domain and use both ym(t) and
ym+1(t).

Thus, in the case when there exists such an integer m
that mτ ≤ t − τ − Δ < t − τ ≤ (m + 1)τ , the integration

of (16) gives

PΔ(t) = a e−λt
m+1∑
k=1

λk+1

k!

(
(t − Δ − kτ)k

+
λ

2(k + 1)

(
(t − kτ)k+1 − (t − Δ − kτ)k+1

)

+
λ e−2λΔ

2

k∑
j=0

k!
(k − j)!(2λ)j+1

(t − kτ)k−j

− λ

2

k∑
j=0

k!
(k − j)!(2λ)j+1

(t − Δ − kτ)k−j

)

− a e−λt
m∑

k=1

λk+1

k!

(
(t − Δ − (k + 1)τ)k

+
λ

2(k + 1)

(
(t−(k + 1)τ)k+1−(t−Δ−(k + 1)τ)k+1

)

+
λ e−2λΔ

2

k∑
j=0

k!
(k − j)!(2λ)j+1

(t − (k + 1)τ)k−j

− λ

2

k∑
j=0

k!
(k − j)!(2λ)j+1

(t − Δ − (k + 1)τ)k−j

)
,

t ∈ [(m + 1)τ + Δ; (m + 2)τ ]. (17)

In the case, when there exists such m, that mτ < t − τ −
Δ < (m + 1)τ < t − τ < (m + 2)τ , one obtains for PΔ(t)
(see Appendix A.4 for details)

PΔ(t)
∣∣∣∣
t∈](m+2)τ ;Δ+(m+2)τ [

=

PΔ(t)
∣∣∣∣
t∈[Δ+(m+1)τ ;(m+2)τ ]

+ ρΔ
m(t), (18)

where

ρΔ
m(t) =

aλ

2
e−λt

(
xm+3

(m + 3)!
− xm+2

(m + 2)!
+

1
2m+3

e−2λΔ

+ e−2λΔ
m+1∑
j=0

xm+1−j

(m + 1 − j)!2j+1

( x

m + 2 − j
− 1

)

+
1

2m+3
e−2(λΔ−x)

)
, where x = λ

(
t−(m + 2)τ

)
.

(19)

Note, that in the case Δ = 0, ISI distribution for t > τ is
completely defined by equation (17), which turns into

PΔ=0(t) = e−λτ P 0(t − τ), t ≥ τ. (20)

Equation (20) coincides with the result for BN with in-
stantaneous feedback, obtained before (see [27]), and has
the clear meaning. In order to obtain output ISI t ≥ τ from
BN with instantaneous feedback two independent events
must happen: (i) interval ]0; τ [ is free from input impulses;
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Fig. 3. Example of ISI probability density function, calculated
in accordance with equations (12)–(15), (17), (18), left panel,
and numerically, by means of Monte Carlo method, right panel.
For both panels: τ = 10 ms, Δ = 8 ms, λ = 10 s−1. In the left
panel, N0 = 2, in the right, N0 = 4. Curve found numerically
for N0 = 2 fits perfectly with one shown in the left panel. In
the numerical experiment 360 000 000 spikes were produced.

(ii) BN without feedback, which starts at the moment τ ,
fires for the first time at [t; t + dt[. Probabilities of these
events are e−λτ and P 0(t − τ)dt respectively.

Graph of PΔ(t) is shown at the Figure 3.

5 Properties of the distribution

5.1 Mean interspike interval

Let us find mean output ISI, WΔ. Output intensity, λo,
defined as the mean number of impulses per time unit, is
inversed WΔ. The WΔ is defined as

WΔ =
∫ ∞

0

tPΔ(t) dt.

Use here equation (7):

WΔ =
∫ ∞

0

t dt

∫ Δ

0

PΔ
s (t)f(s) ds

=
∫ Δ

0

ds f(s)
∫ ∞

0

tPΔ
s (t) dt.

Use here representation (5), (6) and equation (3):

WΔ =
∫ Δ

0

ds f(s)

⎛
⎝

s∫

0

t2e−λtλ2 dt + e−λsλs2 +

s+τ∫

s

tλe−λt dt

⎞
⎠

+

Δ∫

0

ds f(s) e−λ(τ+s)

∞∫

s+τ

tP 0(t − s − τ) dt

=

Δ∫

0

ds f(s)
2 − (1 + λs)e−λs − (1 + λτ + λs)e−λ(τ+s)

λ

+

Δ∫

0

ds f(s) e−λ(τ+s)

(
s + τ +

1
λ

(
2 +

1
eλτ − 1

))
.

Use here (31)–(33), which gives after transformations:

WΔ =
2

((
2λΔ + e−2λΔ + 1

) − 2λΔe−λτ
)

λ (2λΔ + e−2λΔ + 3) (1 − e−λτ )
. (21)

Note, that in the case Δ = 0 equation (21) turns into the
following:

WΔ=0 =
1

λ(1 − e−λτ )
,

which coincides with expression obtained before for the
ISI first moment of BN with instantaneous feedback [27].

The output intensity is λΔ
o = 1/WΔ. At large input

rates the following relation takes place

lim
λ→∞

(
λΔ

o − λ

2

)
=

1
2Δ

. (22)

5.2 Coefficient of variation

Let’s now calculate the coefficient of variation (CV) cΔ
v of

output ISI, which is defined as dimensionless dispersion:

cΔ
v ≡

√
WΔ

2

(WΔ)2
− 1,

where WΔ
2 is the second moment of output ISI:

WΔ
2 ≡

∫ ∞

0

t2 PΔ(t)dt =
∫ Δ

0

ds f(s)
∫ ∞

0

t2 PΔ
s (t)dt.

Performing such integration and taking into account equa-
tion (3), one obtains:

(cΔ
v )2 =

−B1 e2λτ + 2 B2 eλτ − B3

2
((

2λΔ + e−2λΔ + 1
)

eλτ − 2λΔ
)2 − 1, (23)

where

B1 = e−4λΔ − 8e−3λΔ − 2(2λΔ − 3)e−2λΔ

− 8(2λΔ + 3)e−λΔ − (12λ2Δ2 + 12λΔ − 9), (24)

B2 = (λτ + 2)e−4λΔ − 8e−3λΔ

+ 2(λ2Δτ−λΔ+2λτ+6)e−2λΔ−8(2λΔ+3)e−λΔ

− (12λ2Δ2 − 2λ2Δτ + 6λΔ − 3λτ − 18), (25)

B3 = e−4λΔ − 8e−3λΔ − 2(2λΔ − 5)e−2λΔ

− 8(2λΔ + 3)e−λΔ − (12λ2Δ2 + 4λΔ − 21). (26)

The coefficient of variation, given by equation (23),
depends non-monotonically on the input intensity (see
Fig. 4).

Note, that in the case Δ = 0 equation (23) turns into
following:

cΔ=0
v =

√
2λτ e−λτ + 1,

which coincides with expression obtained before for out-
put ISI coefficient of variation of BN with instantaneous
feedback [27].
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Fig. 4. Coefficient of variation as the function of x = λτ for
N0 = 2, τ = 10 ms, Δ = 2 ms (1), Δ = 5 ms (2), Δ = 8 ms
(3) obtained analytically (left); and for N0 = 10, τ = 20 ms,
Δ = 8 ms, obtained numerically after 50 000 000 triggerings for
every point (right).
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Fig. 5. ISI probability distribution (measured in s−1), found
numerically. Left, BN with delayed feedback for N0 = 2,
τ = 10 ms, Δ = 18 ms, λ = 50 s−1, 500 000 triggerings in
Monte-Carlo method; right, LIF neuron with delayed feed-
back for C = 20 mV, τM = 3 ms, Δ = 4 ms, y0 = 15 mV,
λ = 100 s−1, 10 000 000 triggerings in Monte-Carlo method.

6 Numerical simulations

Our first goal for performing numerical simulations was to
check the correctness of obtained analytical expressions,
as well as to get an impression of how ISI distribution
looks like for higher thresholds and for the case Δ > τ . A
C++ program, containing class BNDF, which models the
operation manner of BN with delayed feedback, was de-
veloped. Object of this class receives the sequence of pseu-
dorandom numbers with Poisson distribution to its input.
The required distribution is achieved by using function
ran exponential() on the uniformly distributed sequence
from Mersenne Twister generator from the GNU Scien-
tific Library1.

The ISI probability density, PΔ(t), is found by count-
ing the number of output ISIs of different duration and
normalization. In the program, distribution f(s) of time
to live of impulse in the feedback line, and the output ISI
coefficient of variation, cΔ

v , were calculated as well. Nu-
merically obtained curves fit perfectly with the analytical
expressions for PΔ(t) given in equations (12)–(15), (17),
(18), for f(s) given in equations (31)–(33), and for cΔ

v

given in (23)–(26).
The ISI probability distributions, calculated numeri-

cally for the case Δ > τ , exhibit the same peculiarities as
those, found for Δ < τ , Figure 5, left.

Another goal of numerical simulations was to eluci-
date whether the observed peculiarities in ISI distribution

1 http://www.gnu.org/software/gsl/
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Fig. 6. ISI distribution P Δ(t) (measured in s−1) found nu-
merically for τ = 10 ms, Δ = 8 ms, λ = 50 s−1. Left – N0 = 4,
right – N0 = 6. 30 000 000 triggerings were taken in both cases.

found are due to the model limitations, or they could ap-
pear in similar construction using another neuronal model.
We have chosen the leaky integrate-and-fire (LIF) model
for the next set of numerical calculations. The LIF model
doesn’t allow exact mathematical treatment due to grad-
ual exponential decay of input impulses. The traces of
inputs could be kept in the LIF during unlimited period
of time, actually until the next firing.

In the program developed, the BNDF class was re-
placed with LIFDF class, which reproduces the simplest
version of the LIF model with the delayed feedback line.
Namely, the LIF neuron is characterized by a threshold,
C, and every input impulse advances by y0 the LIF mem-
brane voltage, V . Between input impulses, V decays ex-
ponentially with time constant τM . The LIF neuron fires
when V becomes greater or equal C, and V = 0 just after
firing.

It was found for several parameter sets, that obtained
ISI distribution for LIF model is qualitatively similar to
what was found for the BN model, see example in Figure 5,
right.

7 Conclusions

We calculated here ISI probability density functions for
binding neuron with delayed feedback.

For BN with threshold 2 ISI distribution is found ana-
lytically and numerically, and for higher thresholds – nu-
merically. The obtained functions have remarkable pecu-
liarities which suggest what could happen with spiking
statistics of individual neurons in elaborated network with
delayed connections.

For all considered threshold values output ISI distri-
bution has breaks, derivative discontinuities and δ-shaped
peculiarities (see Figs. 3, 5, left and 6). Presence of deriva-
tive discontinuities is due to finiteness of BN’s memory, τ ,
and was observed before for BN without feedback [25] and
for BN with instantaneous feedback [27].

Breaks, or jumps, in ISI distribution are caused by
the discontinuity of the number of impulses from Poisson
stream needed for triggering. Namely, when the impulse
from the feedback line reaches BN such number decreases
by unity, and increases again when the feedback impulse is
forgotten. Such breaks were observed before for BN with
instantaneous feedback [27].
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Presence of δ-shaped peculiarity at t = Δ can be ex-
plained as follows. If the line was empty at the moment of
last output spike, impulse enters the line and after time,
exactly equal to Δ, reaches BN input. If during time Δ
BN receives one impulse from Poisson stream, then the im-
pulse from the line triggers BN exactly through the time Δ
after the last spike. Such result is independent from the ex-
act arrival time of the Poissonian impulse, therefore, many
alternative realizations of driving Poisson process will con-
tribute to its probability. As a result, the probability to
obtain ISI of duration exactly equal to Δ is not infinites-
imally small, and ISI distribution exhibits the δ-shaped
peculiarity at t = Δ.

ISI distributions, placed in Figures 3, 5, left and 6, are
polymodal. The shape of ISI distribution and the number
of its modes depend essentially on internal BN’s parame-
ters (N0, τ, Δ) and on the Poisson stream intensity λ.

All mentioned peculiarities were also observed for ISI
distributions in the case Δ > τ , obtained in numerical
simulations.

For threshold 2 we also found the mean interspike in-
terval, which is reversed output intensity, as a function
of the input one. The limiting relation (22) can be un-
derstood as follows. At moderate stimulation some input
spikes are lost without influencing output due to high
probability of long input ISI. At high intensity every two
consecutive input impulses trigger the BN and send im-
pulse into the feedback line, provided it is empty. Thus,
output intensity should be λ/2 plus firing, caused by ad-
ditional stimulation from the line. This additional stimu-
lation has maximum rate 1/Δ, which explains (22).

Another statistical characteristic of output stream,
considered here, was the coefficient of variation. At Fig-
ure 4, left, graphs of CV vs. λτ for N0 = 2 and differ-
ent values of delay Δ are placed. All obtained curves are
non-monotonic. For small delay values the maximum is
observed near λτ = 1, where mean interval between input
impulses from the Poisson stream equals to BN’s memory
duration τ . For higher Δ the maximum position shifts to-
wards lower input intensities, and the highest maximum
is observed at Δ = τ . Obviously, one should expect, that
for the case Δ 
 τ obtained curve will tend to the shape
of CV Graph for BN without feedback, which is monoton-
ically declining [27]. Numerical simulations confirm that
conclusion.

For higher thresholds, the maximum on the CV curve
drops, but is always higher than unity. Figure 4, right,
contains CV curve in the case N0 = 10 for realistic input
and output intensities, namely, from 10 to 1000 s−1 for the
input and from 1 to 100 s−1 for the output stream. The
considerable variability of output ISI is consistent with
experimental results [22], where high CV values, ranging
between 0.5 and 1, were obtained at the output of neurons
from primary visual cortex and middle temporal visual
area of the awake behaving monkey.

We conclude that presence of delayed feedback can
radically change neuronal firing statistics as compared to
the case of instantaneous feedback. This refers to mul-
timodality and δ-shaped peak. On the other hand, high

coefficient of variation of the ISI distribution, a feature
relating to experimental data [22], becomes apparent for
both instantaneous, or delayed feedback.

8 Discussion

The main function of a neuron is to receive signals and
to send them out. In real neurons, this function is real-
ized through concrete biophysical mechanism, the main
parts of which are ion channels in excitable membrane and
transmembrane currents through them. The same func-
tion might be realized by means of any other mechanism,
so an abstract model is needed for conceptual description
of signal processing in a generic neuron. Attempts to de-
velop such a model are mainly concentrated around con-
cepts of coincidence detector and temporal integrator [10].
There are suggestions that both concepts could be realized
in a single model [19].

The binding neuron (BN) incorporates both coinci-
dence detector and temporal integrator properties, de-
pending on the characteristics of stimulation applied, [25].
This model was proposed based on numerical simulation
of Hodgkin-Huxley-type point neuron with stimuli, com-
posed of a number of individual excitatory postsynaptic
potentials (EPSP), randomly dispersed over time window
of width W . It was found [23], that the probability to
trigger BN is the step-like function of the W . This sub-
stantiates the use of box function as the representation of
BN’s internal memory. The question of how many synap-
tic impulses in the internal memory are able to trigger the
neuron, should be answered on the base of experimental
data for real neurons. This number varies from one [16],
through fifty [4], to 60–180 [2], and 100–300 [1].

In this work, we calculated the ISI probability den-
sity distribution for BN with delayed feedback. As it can
be seen from Figures 3, 5, left and 6, it has a set of
common features for different parameter values, namely,
contains δ-shaped singularities, jumps, derivative discon-
tinuities and exhibits polymodality. One of those features,
namely, the derivative discontinuity, is due to the model
limitations and is connected with the finiteness of BN’s
memory. On the contrary, all the rest can be observed for
other neuronal models.

For instance, jumps in ISI distribution function were
also obtained for some parameter sets in numerical sim-
ulations of the LIF neuron with feedback, see Figure 5,
right and ([27], Fig. 6, left).

Presence of δ-function-type singularity in ISI proba-
bility distribution is due to the fixed time delay of the
feedback and does not depend on neuronal model used
for calculations. Numerical simulations of LIF neuron
with feedback result in ISI distribution of similar shape,
namely, it is polymodal and contains δ-function, see Fig-
ure 5, right.

Naturally, one should expect the same sharp peak to
appear in output ISI distribution of single biological neu-
ron with feedback axon. Indeed, as the length of given
axon and it’s spike conduction velocity are fixed, the
spike’s delay time in axon is fixed as well, and this is
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Fig. 7. Domains of t used for calculating P Δ
s (t).

enough to obtain peak in the ISI distribution. Situation
when a neuron obtains input from its own output is known
in neurobiology [3,18]. Unfortunately, no data are avail-
able about spiking statistics in this case.

As regards the delayed feedback influence on the signal
processing in larger neuronal networks, its exact analytical
investigation is hardly possible and requires employment
of approximations, e.g. linear response theory, mean-field-
like feedback representation, etc. Available data suggests,
that in presence of excitatory and inhibitory delayed feed-
back in the network of stochastically firing LIF neurons,
as well as in real neuronal systems with inhibitory delayed
feedback, similar peaks in spike train power spectrum may
appear [12,13].

Appendix A

A.1 Auxiliary function PΔ
s (t)

In order to derive PΔ
s (t) it is suitable to separate possible

values t of ISI duration into several domains as shown in
Figure 7.

In case C1, t < s. Here output impulse must be trig-
gered without the line impulse involved. Therefore, distri-
butions for such ISI values is the same as for BN without
feedback:

PΔ
s (t) = P 0(t), t < s. (27)

Consider case C2. The probability to obtain ISI exactly
equal to s is not infinitesimally small. This event is equiv-
alent to the event AS1(s) that BN starts empty at mo-
ment 0 and appears without triggerings in state S1 (keeps
impulse) at moment s. In order to obtain the probability
P{AS1(s)}, let us take into account that P 0(s) ds can be
obtained as the product of P{AS1(s)} and the probability
to get input impulse in infinitisemal interval ds, which is
λds. Therefore,

P{AS1(s)} =
P 0(s)

λ
, (28)

which together with equation (1) gives the δ-function’s
mass in the expression for PΔ

s (t) at point t = s.
As we mentioned before, in order to keep expressions

shorter we assume that Δ < τ , and calculate ISI distribu-
tion for the case C3, above. Due to the assumption made,
the probability to obtain ISI value s < t ≤ s + τ is just
equal to the probability that first input impulse comes at
required moment t. Therefore,

PΔ
s (t) = e−λtλ, s < t ≤ s + τ. (29)

Consider case C4, t ≥ s + τ . It is realised if three in-
dependent events occur in series: (i) AS0(s); (ii) interval

]s; s+τ [ is free from input impulses; (iii) BN without feed-
back starts from state S0 at moment s + τ and is firstly
triggered at moment t. These events are independent since
their realizations are defined by behavior of Poisson input
stream on intervals, which are mutually disjoint. Due to
the assumption made, the probability to have both (i) and
(ii) is the same as to have in the Poisson input stream
an ISI longer then s + τ , and (iii) has the probability
P 0(t − s − τ) dt. Thus,

PΔ
s (t) = e−λ(τ+s)P 0(t − s − τ) t ≥ s + τ. (30)

Taking into account equations (27)–(30) one obtains
PΔ

s (t) as a sum of singular (5) and regular (6) parts.

A.2 Transition probabilities

From the meaning of PΔ
s (t) it follows that equa-

tion (6)(∗∗) allows to calculate P (s | s′) for s < s′:

P (s | s′) = e−λ(s′−s)λ2(s′ − s), s < s′ ∈]0; Δ].

Equations (5) and (6)(∗) describe situation when one ISI
starts with impulse in the feedback line, which has time
to live equal s, and the next ISI starts with impulse in the
line, which has time to live equal Δ. Thus, P (s | s′) has
singularity of δ-function type at s = Δ. For calculating its
mass, one should take (5), (6)(∗) with s replaced with s′
and calculate integral over admittable values of t:

e−λs′
λs′ +

s′+τ∫

s′

e−λtλdt+

∞∫

s′+τ

e−λ(τ+s′)P 0(t− s′ − τ) dt =

λ s′e−λ s′
+ e−λ s′

.

Here we use
∞∫
0

P 0(t) dt = 1.

So, finally one obtains expression (9) for transition
probabilities.

A.3 Delays distribution

Here we found probability density distribution f(s). For
this purpose let us represent f(s) as

f(s) = a δ(s − Δ) + g(s) = a δ(s − Δ) + eλsϕ(s), (31)

where a – is a dimensionless constant, and g(s), ϕ(s) –
are ordinary functions, vanishing out of ]0; Δ]. After sub-
stituting (9) and (31) into equation (8), and separating
terms without δ-function, one obtains

a e−λΔλ2(Δ − s) + λ2

Δ∫

s

(s′ − s)ϕ(s′) ds′ = ϕ(s).
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This equation can be easily solved with respect to ϕ(s),
which delivers g(s) as

g(s) =
a λ

2

(
1 − e−2λ(Δ−s)

)
. (32)

Taking into account that f(s) must be normed: a +
Δ∫
0

g(s) ds = 1, one obtains

a =
4e2λΔ

(2λΔ + 3)e2λΔ + 1
. (33)

A.4 ISI distribution for t ∈](m + 2)τ ; Δ + (m + 2)τ [

Consider such ISI, that mτ < t − τ − Δ < (m + 1)τ <
t − τ < (m + 2)τ , or t ∈](m + 2)τ ; Δ + (m + 2)τ [. Taking
into account equations (1) and (2), one can rewrite (16)
as follows

PΔ(t)
∣∣∣∣
t∈](m+2)τ ;Δ+(m+2)τ [

= a e−λ(Δ+τ)ym(t − Δ − τ)

+
∫ t−(m+2)τ

0

e−λ(s+τ)ym+1(t − s − τ)g(s)ds

+
∫ Δ

t−(m+2)τ

e−λ(s+τ)ym(t − s − τ)g(s)ds

= a e−λ(Δ+τ)ym(t − Δ − τ)

+
∫ Δ

0

e−λ(s+τ)ym(t − s − τ)g(s)ds

+
λm+3

(m + 2)!
e−λt

∫ t−(m+2)τ

0

(t−s−(m + 2)τ)m+2g(s)ds

− λm+2

(m + 1)!
e−λt

∫ t−(m+2)τ

0

(t−s−(m + 2)τ)m+1g(s)ds

= PΔ(t)
∣∣∣∣
t∈[Δ+(m+1)τ ;(m+2)τ ]

+ ρΔ
m(t),

where

ρΔ
m(t) =

λm+3

(m+2)!
e−λt

∫ t−(m+2)τ

0

(t−s−(m+2)τ)m+2g(s)ds

− λm+2

(m + 1)!
e−λt

∫ t−(m+2)τ

0

(t − s − (m + 2)τ)m+1g(s)ds,

m = 0, 1, . . . (34)

Performing integration in (34) one obtains equation (19)
for ρΔ

m(t), and equation (18) for ISI distribution.
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