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Abstract. The binding neuron model [A.K. Vidybida, BioSystems 48, 263 (1998)] is inspired by numerical
simulation of Hodgkin-Huxley-type point neuron [A.K. Vidybida, Biol. Cybern. 74, 539 (1996)], as well as
by the leaky integrate-and-fire (LIF) model [J.P. Segundo, D. Perkel, H. Wyman, H. Hegstad, G.P. Moore,
Kybernetic 4, 157 (1968)]. In the binding neuron, the trace of an input is remembered for a fixed period
of time after which it disappears completely. This is in the contrast with the above two models, where the
postsynaptic potentials decay exponentially and can be forgotten only after triggering. The finiteness of
memory in the binding neuron allows one to construct fast recurrent networks for computer modeling [A.K.
Vidybida, BioSystems 71, 205 (2003)]. Recently, [A.K. Vidybida, BioSystems 89, 160 (2007)], the finiteness
is utilized for exact mathematical description of the output stochastic process if the binding neuron is driven
with the Poisson input stream. In this paper, it is expected that every output spike of single neuron is
immediately fed back into its input. For this construction, externally fed with Poisson stream, the output
stream is characterized in terms of interspike interval (ISI) probability density distribution if the neuron
has threshold 2. For higher thresholds, the distribution is calculated numerically. The distributions are
compared with those found for binding neuron without feedback, and for leaky integrator. It is concluded
that the feedback presence can radically alter spiking statistics.

PACS. 87.19.ll Models of single neurons and networks – 87.10.-e General theory and mathematical aspects
– 87.10.Ca Analytical theories – 87.10.Mn Stochastic modeling

1 Introduction

The main function of a neuron is to receive signals and to
send them out. In real neurons, this function is realized
through concrete biophysical mechanism, the main parts
of which are ion channels in excitable membrane and vari-
ations of ionic concentrations inside and outside of nerve
cell and its processes, see [6] for details. The same func-
tion might be realized by means of any other mechanism
able to support signals processing in the manner, which is
characteristic of a real neuron. If so, then it would be in-
teresting to develop a model, which realizes in an abstract
form a concept of signal processing in real neurons, and
is exempt from necessity to follow any biophysical mech-
anism supporting the processing. Such a model is neces-
sary for quantitative mathematical formulation of what
is going during signals/information processing in neural
systems. Attempts to develop such a model are mainly
concentrated around concepts of coincidence detector and
temporal integrator, see discussion in [7]. One more model,
the binding neuron (BN), is proposed as signal processing
unit, which can operate either as coincidence detector, or
temporal integrator, depending on quantitative character-
istics of stimulation applied. This conforms with behavior
of real neurons, see, e.g. [8]. The BN model is inspired
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by numerical simulation of Hodgkin-Huxley-type neuron
stimulated from many synaptic inputs, as well as by the
leaky integrate-and-fire model [3]. It describes function-
ing of a neuron in terms of events, which are input and
output spikes, and degree of temporal coherence between
the input events, see [1,2,5] for details. It is observed, that
during processing of sensory signals, the spiking statis-
tics of individual neurons changes substantially when the
signal travels from periphery to more central areas (see,
e.g. [9]). The changing of spiking statistics could underlie
the information condensation, which happens during per-
ception [10]. This transformation of statistics may hap-
pen due to feedforward and feedback connections between
neurons involved in the processing. Having in mind such
possibilities, it would be interesting to check what hap-
pens with spike train statistical properties when it passes
neuronal structures with feedback connections.

Usually, feedback/recurrent connections are consid-
ered between several neurons. In this paper we consider
the simplest possibility, namely, the single neuron with
feedback. Such a configuration, can be found in real bio-
logical objects (see, e.g. [11,12]). As neuronal model we use
binding neuron as it allows to obtain exact mathematical
expressions, which may be suitable for further analysis. It
is expected that input stream in any synapse of the neu-
ron is Poisson one. In this case, from mathematical point
of view, all input lines (input synaptic connections) can
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Fig. 1. Schematic representation of binding neuron (top) and
BN with feedback (bottom).

be replaced with a single one with Poisson stream in it,
having its intensity equal to the sum of all intensities in
the synapses (Fig. 1, top). The binding neuron works as
follows. Any input impulse is stored in the neuron dur-
ing time τ and then it is forgotten. When the number
of stored impulses, Σ, becomes equal to, or larger then
the threshold one, N0, the neuron sends out an output
spike, clears its internal memory and is ready to receive
impulses from the input stream. One obtains the binding
neuron with feedback (BNF) by immediate feeding each
output impulse to the neuron’s input (Fig. 1, bottom).
In this case, just after firing, the neuron has one impulse
in its internal memory, and this impulse has time to live
equal τ .

The specifics of mathematical analysis of BN-type sys-
tems is due to presence in those systems both determinis-
tic and stochastic dynamics. Namely, the neuron obtains
its input from a random stream (stochastic component)
and every impulse is stored for the same fixed period
of time (deterministic component). This is in the con-
trast with the mass service theory [13], where the service
time (counterpart of time to live, τ) is random, Poisson-
distributed. The simultaneous presence of deterministic
and random dynamics in real neurons is due to the fact
that in real neurons the impulse existence in a neuron
(exposed as the excitatory postsynaptic potential) is sup-
ported by electrochemical transient [14], which is deter-
ministic, whereas the input impulses come from other neu-
rons and external media in irregular (random) manner1.

2 Condensing of information with neurons

It is widely accepted that during flow of sensory signals in
a hierarchical manner from sensory periphery to central
brain areas, the information, which is present in the sig-
nals, becomes less analogue and more discrete, eventually
resulting in representing discrete symbols or entities (see
e.g. [10]). During this process, the amount of information
within the flow must decrease in order to map various in-
put spike trains from the sensory periphery into the same

1 Compare with [15,16], where approach is adopted, which is
consistent with mass service theory.

input
t1 t2 t3 t4 t5 t6 t7

BN output
t3 t6

t = 0

BNF output
t4t3 t6

τ

Fig. 2. Example of input spike train and corresponding output
for binding neuron (BN), and binding neuron with feedback
(BNF). In both cases N0 = 2.

discrete entity. This process of consecutive reduction of in-
formation is known as condensation. Condensation of in-
formation represents a possible route to selforganization
(compare with [17], No. 1.19). We now put a question:
what could be the primary element in which the conden-
sation takes place? It seems that single neuron is a suit-
able candidate for such an element. In the case of binding
neuron this can be explained as follows.

Consider an input spike train like upper train in Fig-
ure 2. The train can be regarded as signal from a receptor
neuron. After processing with the BN, the output spike
train consists of two output impulses at moments t3 and
t6. The BNF gives three spikes at moments t3, t4 and t6.
It is clear that the output trains contain less information
then the input one. Nevertheless, having the output train
for either BN, or BNF, one can make some condensed
conclusions concerning the input train.

In the case of BN, the output spike at moment t3 tells
us that there where input impulses at moments t3 and t∗,
where t∗ ∈]t3 − τ ; t3[, and the input impulse at moment t∗

did not trigger an output one at the moment of its arrival.
For realization shown in Figure 2, t∗ = t2. Information de-
livered in the output spike t3 is indeed condensed, because
the presence and exact timing of this output spike does not
change if position of t∗ deviates remaining within interval
]t3 − τ ; t3[. The same is about output spike at moment t6.

In the case of BNF, the output spike at moment t3 tells
us that there where input impulses at moments t3 and t∗,
where t∗ ∈]t3 − τ ; t3[, and the time interval ]t∗ − τ ; t∗[ is
free of input impulses. The same is about t6. Two output
spikes at moments t3, t4, where t4 − t3 < τ , tell us addi-
tionally that in the input there were 3 successive impulses
separated by intervals shorter then τ . Similar conclusions
can be made for binding neurons with N0 > 2. More-
over, condensed conclusion about input, which is based
on corresponding output spike train, can be formulated
for other neuronal models, like Hodgkin and Huxley, or
leaky integrator. The difference is that for binding neu-
ron the conclusion admits formulation in precise and clear
mathematical manner, whereas for other models it does
not. A less precise, fuzzy formulation, which is suitable
for any model is that the output spike signals about pres-
ence in the input train temporally coherent (distributed
over short time interval) set of impulses (see [1,2] for dis-
cussion).
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3 Output intensity of BNF with threshold 2

The intensity of output stochastic process can be defined
by three different ways:

1. It is possible to define the instantaneous intensity
(see [13]), λo(t), as the probability to obtain an output
impulse at moment t in infinitesimal interval s divided
by s:

λo(t) = lim
s→0

w(s, t)
s

, (1)

where w(s, t) denotes the probability to obtain impulse
in the interval [t; t + s[. We do not intend to analyze
the λo(t) time dependence here.

2. As limit, or mean output intensity one can choose the
following

λo = lim
t→∞

λo(t). (2)

3. In the definition of λo in (2), the role of time limit is to
ensure that the initial state of the system is forgotten.
In this case one can define/calculate λo as the factor
in the expression λo dt, which gives the probability to
obtain an output impulse in the infinitesimal interval
dt, if nothing is known about previous states of the
neuron.

It can be shown that both definitions 2 and 3 bring about
the same value for λo. Therefore, we choose the third one
here. Calculations based on the second definition can be
fulfilled with the help of ([18], Part. XI, Sect. 8).

The probability to obtain an output impulse from the
BNF with threshold 2 in the interval [t; t+dt[, λo dt, can be
calculated as product of probabilities of two independent
events: (i) an input impulse, I1, arrives in the interval
[t − τ ; t[; (ii) the next input impulse, I2, arrives in the
interval [t; t+dt[. Event (ii) has probability λdt. Event (i)
has the same probability as having in Poisson stream two
successive events (here I1, I2) separated by time interval,
which is shorter than τ . This probability is 1−e−λτ . Thus,

λo = (1 − e−λ τ )λ. (3)

Interesting, that for high input rates (λ → ∞), the trig-
gering rate becomes equal to the input one. This can be
explained as follows. If input rate is very high, almost
all input ISIs become shorter then τ . In this case, any
input, stored in the BNF will eventually give rise to out-
put spike, which is immediately used as input for empty
neuron due to feedback. This effectively doubles the in-
put rate. Namely, any input impulse triggers the BNF,
and then it is applied to empty BNF through feedback.
As a result, the output stream for high λ literally repro-
duces the input one: any input spike becomes the output
one without delay2. This same reasoning allows one to
say that output rate of BNF with any threshold N0 ap-
proaches λ/(N0 −1) when λ → ∞. Compare this with BN
without feedback in [5], where corresponding limit output
rate is λ/N0.

2 See also discussion section.

4 Distribution of output intervals for BNF
with N0 = 2

Let us consider a BNF with threshold N0 = 2 and internal
memory τ , which obtains its input from Poisson stream
with intensity λ. Thus, the neuron fires every time when
input impulse arrives τ , or less units of time after its pre-
decessor.

The output statistics can be described in terms of the
probability density distribution to obtain an output inter-
spike interval t with precision dt. For this purpose it is
enough to calculate the probability, Pb(t, τ)dt, of the fol-
lowing event: the next firing happens t units of time later
than the previous one. Let the input impulses, which ar-
rive after the previous firing, are numbered with numbers
1, 2, ... .

The above-mentioned event can be decomposed into
several alternatives, which are numbered with the number
k of input impulse, which triggers the next firing. Notice,
that for t < τ only one alternative is possible. It happens if
the first input impulse arrives not later then τ units of time
after the previous firing. In this case, the neuron still keeps
impulse from the previous firing, and the input secures the
threshold to be achieved and BNF to fire. There is no other
way to get output interval t shorter then τ . Thus, for t ∈
[0; τ [, the probability density distribution of ISI coincides
with the distribution for the input Poisson stream:

Pb(t, τ) dt = e−λ tλdt. (4)

It is impossible to obtain output interval t > τ with a
single input impulse3. Thus, for t > τ , possible alterna-
tives are numbered with numbers 2, 3, . . . , kmax, where
kmax = [t/τ ] + 1, and [x] denotes the integral part of x.

Assume, the k-th alternative is realized by input ar-
rival times t1, t2, . . . , tk−1, tk ≡ t. Not all arrival times are
admitted (see (5) and further, below). In accordance with
the definition of Poisson process, the probability of such
realization is given by the following expression:

e−λt1λdt1e
−λ(t2−t1)λdt2 · · · e−λ(t−tk−1)λdt.

The probability Pbk(t, τ)dt that the k-th alternative is re-
alized with any admissible values of t1, t2, . . . , tk−1 can
be calculated by integrating of the above expression over
the region of (k − 1)-dimensional space with coordinates
t1, t2, . . . , tk−1, defined by the following conditions:

t1 ≥ τ, t1 + τ < t2, . . . , tk−2 + τ < tk−1 < t, (5)

and t − tk−1 < τ . The required integral over the region
defined by (5) can be calculated exactly:

e−λtλk−1

t−(k−2)τ∫

τ

dt1

t−(k−3)τ∫

t1+τ

dt2 · · ·
t∫

tk−2+τ

dtk−1λdt =

e−λtλk−1 (t − (k − 1)τ)k−1

(k − 1)!
λdt. (6)

3 The value of Pb(τ, τ ) can be chosen arbitrary.
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Fig. 3. Interspike intervals (ISI) distribution Pb(t, τ ) (mea-
sured in s−1) for τ = 10 ms, λ = 10 s−1, N0 = 2. Left –
calculated in accordance with (4, 7), right – calculated numer-
ically.

If k = kmax, then (5) ensures: (k − 1)-th impulse is in the
interval ]t− τ ; t[, and k-th impulse at moment t will cause
firing. Thus, in this case

Pb k(t, τ) dt = e−λtλk−1 (t − (k − 1)τ)k−1

(k − 1)!
λdt, k = kmax.

If k < kmax, then integral (6) includes also configurations
for which tk−1 < t−τ . For these configurations k-th input
impulse at moment t will not cause firing. The contribu-
tion of these configurations into the integral (6) is given
by the following expression

e−λtλk−1

t−(k−1)τ∫

τ

dt1

t−(k−2)τ∫

t1+τ

dt2 · · ·
t−τ∫

tk−2+τ

dtk−1λdt =

e−λtλk−1 (t − k τ)k−1

(k − 1)!
λdt,

which should be subtracted from (6). Thus, for 2 ≤ k <
kmax:

Pb k(t, τ) dt = e−λt λk−1

(k − 1)!
(
(t − (k − 1)τ)k−1

−(t − k τ)k−1
)
λdt.

The total probability is calculated by summation over all
alternatives. Notice, that kmax changes by 1 when t passes
through integer multiple of τ . Thus, for m = 1, 2, . . . the
following statement is valid: if mτ < t < (m + 1)τ , then

Pb(t, τ)dt = e−λt λ
m

m!
(t − mτ)mλdt +

∑

2≤k≤m

e−λt λk−1

(k − 1)!

×
(
(t − (k − 1)τ)k−1 − (t − k τ)k−1

)
λdt. (7)

For t ∈ [0; τ [ the function Pb(t, τ) dt is given by (4). The
distribution Pb(t, τ) dt, which is given in equations (4, 7),
is analogous to distribution P (t) dt = e−λtλdt known for
Poisson process. The graph of Pb(t, τ) is shown in Figure 3.

5 Properties of the distribution

Notice that after firing, the neuron starts from standard
state: it keeps a single impulse with time to live equal τ .

Therefore, there is no correlation between successive in-
terspike intervals. This fact depends crucially on the im-
mediateness of feedback. For delayed feedback, as it could
be suggested by [19], successive interspike intervals will be
correlated.

5.1 Connection with BN distribution

It is interesting that function P (t, τ), which gives the
probability density distribution for binding neuron with-
out feedback (see [5], Eq. (6)) has simple interconnection
with Pb(t, τ). In order to find this interconnection, de-
note restriction of Pb(t, τ) onto interval [mτ ; (m + 1)τ [ as
Pbm(t, τ). (7) then means:

mτ ≤ t < (m + 1)τ ⇒ Pb(t, τ) = Pbm(t, τ), m = 1, 2, . . .

Substitute here t + τ instead of t:

mτ ≤ t + τ < (m + 1)τ ⇒ Pb(t + τ, τ) = Pbm(t + τ, τ),

where m = 1, 2, . . . , or

(m − 1)τ ≤ t < mτ ⇒ Pb(t + τ, τ) = Pbm(t + τ, τ),

where m = 1, 2, . . . Substitute here m instead of (m − 1):

mτ ≤ t < (m + 1)τ ⇒ Pb(t + τ, τ) = Pb,m+1(t + τ, τ),
m = 0, 1, 2, . . .

The explicit expression for Pb,m+1(t+τ, τ) can be obtained
from (7):

Pb, m+1(t + τ, τ) = e−λ(t+τ) λm+1

(m + 1)!
(t − mτ)m+1λ

+
∑

2≤k≤m+1

e−λ(t+τ) λk−1

(k − 1)!

×
(
(t−(k−2)τ)k−1−(t−(k−1)τ)k−1

)
λ.

The last expression coincides with the corresponding term
in the ([5], Eq. (6)) multiplied by e−λτ . Thus, the following
representation takes place:

{
0 ≤ t < τ ⇒ Pb(t, τ) = e−λtλ,

τ ≤ t ⇒ Pb(t, τ) = e−λτP (t − τ, τ).
(8)

The last expression together with the fact that P (t, τ)
from ([5], Eq. (6)) is normalized, allows one to check easily
that Pb(t, τ) is normalized as well:

∞∫

0

Pb(t, τ) dt = 1.
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5.2 Mean interspike interval

Having for Pb(t, τ) representation (8), one can easily cal-
culate mean interspike interval, W , which is defined as

W =

∞∫

0

t Pb(t) dt.

Substitute here representation (8):

W =

τ∫

0

t e−λtλdt +

∞∫

τ

t e−λτP (t − τ, τ) dt

=
1 − e−λτ

λ
− τ e−λτ + e−λτ

∞∫

0

(t + τ)P (t, τ) dt

=
1 − e−λτ

λ
+ e−λτ

∞∫

0

t P (t, τ) dt.

The last integral is calculated in [5] Section 3.2. Use found
there expression:

W =
1 − e−λτ

λ
+ e−λτ 1

λ

(
2 +

1
eλτ − 1

)

=
1

λ (1 − e−λτ )
. (9)

Compare this with (3).

5.3 Coefficient of variation

Coefficient of variation cfv for obtained distribution (7)
can be calculated as follows

cfv =

√
W2

W 2
− 1, (10)

where W is given in (9), and W2 is the second moment of
distribution (7):

W2 =

∞∫

0

t2 Pb(t, τ) dt.

Here use representation (8):

W2 = λ

τ∫

0

t2 e−λt dt + e−λτ

∞∫

τ

t2P (t − τ, τ) dt

=
2 − ((λτ)2 + 2λτ + 2)e−λτ

λ2

+ e−λτ

∞∫

0

(t + τ)2P (t, τ) dt. (11)

The second term here can be split into three:

e−λτ

∞∫

0

τ2P (t, τ) dt = e−λτ τ2,

e−λτ 2τ

∞∫

0

tP (t, τ) dt = e−λτ 2τ
1
λ

(
2 +

1
eλτ − 1

)
,

(used same expression as for calculating (9)), and

e−λτ

∞∫

0

t2P (t, τ) dt.

The ISI distribution’s second moment for BN without
feedback can be calculated similarly as it is done for its
first moment. This gives

∞∫

0

t2P (t, τ) dt =
2
λ2

3 e2λ τ + (λ τ − 3) eλ τ + 1
(eλ τ − 1)2

. (12)

Substitute this into (11). This gives

W2 =
2 eλ τ

λ2

eλ τ + λ τ

(eλ τ − 1)2
. (13)

Substitute this and (9) into (10), this gives

cfv =
√

2 λτ e−λτ + 1.

Coefficient of variation gets its maximum value, cfvm,

cfvm =
√

2 e−1 + 1 ≈ 1.32

at λτ = 1 (Fig. 5, left).
It is also possible, by using equation (12), to calculate

coefficient of variation, cv, for BN without feedback:

cv =

√
2 λτ eλτ + 0.5

4 e2λτ − 4 eλτ + 1
+

1
2
.

The cv gets its maximum value equal to 1 at λτ = 0, and
decreases monotonically when λτ increases (Fig. 5, left).

6 Numerical simulations

Numerical simulations were carried out here for several
purposes. The first purpose was to check numerically cor-
rectness of the expressions found analytically in previ-
ous sections. A C++ program was developed, which al-
lows to calculate the Pb(t, τ). The Poisson streams were
generated by transformation of uniformly distributed se-
quences of random numbers (see, e.g. Eqs. (12.14) in [20]).
Those sequences were produced with the system pseudo-
random number generator from libc library in the Linux
operating system, as well as with the Mersenne Twister,
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Fig. 4. ISI distribution Pb(t, τ ) (measured in s−1) found nu-
merically for τ = 10 ms, λ = 50 s−1. Left – N0 = 4, right –
N0 = 6. Notice the discontinuity at t = τ . 30 000 000 trigger-
ings were taken in both cases.

mt19937 [21]. The two methods give indistinguishable re-
sults. The program includes the BNF class, which analyzes
the input stream and fires in accordance with the rules, de-
scribed above. With the help of that class, output stream
samples were produced by calculating N = 30 000 000
output spikes. The samples are scanned for interspike in-
tervals of various duration, and the probability density
distribution is then calculated by normalization. The nu-
merically obtained ISI distributions are in good agreement
with analytical expression, as it can be seen in Figure 3.
Also, the second moment of Pb(t, τ) was calculated nu-
merically for several values of λ, τ . Deviation of numeri-
cally found values from analytical expression (13) is within
0.01% ÷ 0.1% range.

The second purpose of numerical calculations is to ob-
tain ISI distributions for higher thresholds. The above
mathematical reasoning for BNF with threshold N0 = 2
becomes extremely cumbersome for thresholds N0 = 3,
or higher. It seems that there should be a more efficient
mathematical approach for higher thresholds. Meanwhile,
it is possible to calculate numerically the probability den-
sity distribution for any threshold value. Examples of cal-
culated densities are shown in Figure 4. These densities
are in qualitative agreement with what is found analyti-
cally for N0 = 2, except of the fact that the initial part
of ISI distribution is increasing for N0 > 2, whereas for
N0 = 2 it is decreasing. The initial (for t < τ) part of
the probability density distribution Pb(t, τ)dt can be eas-
ily found analytically for any threshold N0. Indeed, denote
the moment of the previous firing as 0. At this moment
BNF stores one impulse with time to live τ . The next firing
happens at moment t < τ iff N0 − 2 input impulses ar-
rive within the interval ]0; t[, and one more impulse within
[t; t+dt[. The probability of such event for Poisson process
is known, which gives for any N0 ≥ 2

Pb(t, τ) dt = e−λt (λt)N0−2

(N0 − 2)!
λdt, t < τ.

This function is decreasing for N0 = 2 and increasing for
higher N0, which explains seeming qualitative disagree-
ment between N0 = 2 and N0 > 2 cases.

The third purpose was to compare the ISI distribu-
tions found here for the binding neuron model with those
for leaky integrate and fire (LIF) model. In the program
developed, the BNF class was replaced with LIF class,
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Fig. 5. Left: coefficient of variation as function of x = λτ for
BN (Cv) and BNF (Cfv). Right: ISI distribution Pb(t) (mea-
sured in s−1) found numerically for leaky integrate and fire
model with feedback. Used 30 000 000 output spikes. Firing
threshold, C = 20 mV, input intensity, λ = 0.1 s−1, mem-
brane time constant, τM = 6 ms, input impulse amplitude,
y0 = 7.5 mV.

which reproduces the simplest version of the LIF model.
Namely, the LIF neuron is characterized by a threshold,
C, and every input impulse advances by y0 the LIF mem-
brane voltage, V . Between input impulses, V decays ex-
ponentially with time constant τM . The LIF neuron fires
when V becomes greater or equal C, and V = 0 just after
firing. Examples of the ISI distribution obtained for vari-
ous parameter values are shown in Figures 5 (right) and 6
(left).

7 Conclusions

We calculated here intensity and output interspike inter-
vals distribution for binding neuron with instantaneous
feedback, which is stimulated with Poisson stream. For
BNF with threshold N0 = 2 this is done analytically, for
higher thresholds – numerically. It is interesting to com-
pare the obtained distributions with those known for a
single neuron without feedback. Such distributions are ob-
tained numerically for LIF model in [3], and analytically
for binding neuron in [5]. In both cases distributions are
continuous and uni-modal. By comparing these distribu-
tions with those found here for BNF (see also comparison
of coefficients of variation in Sect. 5.3), one could con-
clude that even the simplest possible feedback excitation
is able to change radically statistical properties of spik-
ing process. This gives a hint about what could take place
with spiking statistics of individual neurons in networks,
where feedback due to recurrent excitation (mediated by
neighbor neurons) is typical feature. Numerical calcula-
tions made for the LIF model with feedback (Fig. 5, right,
and Fig. 6, left) suggest, that introducing feedback might
result in qualitative changing of spiking statistics for other
neuronal models as well.

8 Discussion

The problem of mathematically rigorous description of fir-
ing statistics of a model neuron seems to be interesting for
several reasons. Firstly, it is because that statistics can be
estimated experimentally. Statistical characteristics, such

see erratum at the end
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as mean, dispersion, coefficient of variation in the ISIs dis-
tribution, and ISIs distribution itself are of interest. Un-
fortunately, obtaining exact mathematical expressions for
those quantities is difficult task, mainly due to threshold-
type behavior of real neurons, which must be present in
any neuronal model. A substantial progress in obtaining
analytical expressions for those quantities is made for dif-
fusion models only, see [22–26]. If input to a model neuron
(usually, leaky integrate and fire one) is chosen as diffusion
stochastic process, then contribution of individual input
impulses is infinitesimally small, which is compensated by
a possibility to have infinite number of input impulses dur-
ing finite time interval, see [27]. The validity of such a situ-
ation could be approved if in reality a neuron obtains large
number of inputs during short time intervals, or at least
the number of inputs, which is necessary for triggering is
large. This is tightly connected with the well-known spike
code – rate code paradigms. In the case of rate coding,
the diffusion approximation is suitable, and in the case
of spike coding it does not. Available data suggest that
in nervous system both paradigms coexist, see discussion
in [7]. This is also supported by experimental findings of
how many synaptic impulses is necessary to trigger a neu-
ron. The number varies from one [28], through fifty [29],
to 60–180 [30], and 100–300 [31].

The diffusion approximation has an advantage, that it
allows to obtain conclusions for a range of threshold values
in a uniform manner. Considering individual input spikes
as significant, requires to develop separate mathematical
approach for each individual value of threshold, see [32],
where output intensity is calculated for BN with N0 = 3.
In principle, diffusion approximation could be applied for
binding neuron as well. Numerical simulations made for
BN with thresholds up to 20 (unpublished data) suggest
that ISIs distribution for BN stimulated with diffusion
process will be qualitatively similar to what was obtained
in [3,5]. But it will be difficult to preserve diffusion process
paradigm while feeding back individual output spikes in
BNF. At the same time, consideration of individual spikes
as significant, allows new behavior to appear in leaky in-
tegrate and fire neuron as well (Fig. 5, right, and Fig. 6,
left).

The exact discontinuities in the output ISI distribu-
tions, which can be seen in Figures 3, 4, are due to abrupt
loss of feedback input influence τ units of time after trig-
gering. Output ISI, which is shorter then τ , is created with
the feedback spike involved. The longer ISIs are created
without feedbacked spikes. Therefore, the jump is in the
direction of smaller probabilities. In the models, in which
the influence of input spike diminishes gradually, one could
expect the decreasing region of probability density func-
tion course in the range, where role of feedback inputs
becomes small. This could cause a bimodal distribution of
output ISIs, like shown in Figure 5, right. Nevertheless, for
special parameter values, the genuine discontinuity can be
as well observed for the LIF model, like in Figure 6, left4.

4 For the LIF model, the presence of discontinuity in ISI
distribution in Figure 6, left, can be proved mathematically
rigorously.
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Fig. 6. Left: ISI distribution Pb(t) found numerically for leaky
integrate and fire model with feedback. Used 30 000 000 out-
put spikes. Firing threshold, C = 20 mV, input intensity,
λ = 0.1 s−1, membrane time constant, τM = 3 ms, input im-
pulse amplitude, y0 = 15 mV. Right: BNF ISI distribution in
accordance with equations (4) and (7) displayed for compari-
son. Here λ = 0.1 s−1, τ = 3.3 ms. Both densities are measured
in s−1. Compare also with Figure 3.

It is worth noticing the high variability of the BNF ISIs
distribution, which can be seen in Figure 5, left, which is
similar to experimentally observed for real neurons, [33].
The coefficients of variation dependence on x = λτ , which
is found for BN and BNF, can be explained as follows. For
x → 0 both BN, and BNF output streams become Pois-
son. Indeed, consider the BN case. The BN will generate
an output spike in interval [t; t + dt[ if three conditions
are satisfied: (i) there is input spike in [t; t + dt[, (ii) the
previous input was received at t − τ , or later, (iii) the
previous input did not trigger BN. Violation of cond. (iii)
with (i), (ii) satisfied is improbable when λτ → 0, because
this means appearance of two successive input ISIs, both
shorter then τ , which is small compared to 1/λ. For Pois-
son input this may happen with probability

(
1 − e−λτ

)2
,

and for small x may be neglected. In this case the desired
probability of output is

(
1 − e−λτ

)
λdt, which describes

Poisson stream with intensity λ′ =
(
1 − e−λτ

)
λ. For this

stream, coefficient of variation is 1. Similar reasoning is
valid for BNF. In the opposite case, when λτ → ∞, vio-
lation of condition (iii) for BN cannot be ignored. Actu-
ally, for high stimulation rates, the BN will act as perfect
integrator. The output stream of perfect integrator is γ-
distributed, with cv < 1. For BNF at high stimulation
rates, every feedbacked spike will combine with next in-
put one, and trigger next output spike5. This possibility
was mentioned as “dancing in step” in [34] page 43. In
such a regime, output stream exactly reproduces the input
one, hence, is Poisson stream with cfv = 1. For intermedi-
ate values of λτ the “dancing in step” will be interrupted
from time to time by waiting longer then τ for the next
input spike. The triggering, which is next to this event,
must happen without feedback involved. Combination of
this two possibilities gives maximum variability of output
stream at λτ = 1.

Finally, it would be interesting to compare ISI distribu-
tions found here with those observed experimentally. The

5 N0 = 2 is expected. See also reasoning at the end of Sec-
tion 3.

see erratum at the end
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configurations with feedback are known for real biological
objects, [11,12]. The self-excitatory neurons described in
the cited papers are incorporated in a complicated net-
work. Thus, their spiking statistics is influenced by other
neurons. Therefore, a more developed network model is
needed in order to compare with experimental data.

I thank to A. Andrew for sending me the D. MacKay’s paper.
During preparation of this paper the following free software
were used: (i) Linux operating system; (ii) computer algebra
system “Maxima” (http://maxima.sourceforge.net).
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Both in the caption of Figures 5 and 6, measuring units s−1 should be replaced with ms−1, as follows. Right panel
in Figure 6 appeared incorrect due to confused units. The correct panel is displayed below. Notice the remarkable
similarity between BNF and leaky integrate and fire model in Figure 6.
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Fig. 5. Left: Coefficient of variation as function of x = λτ for BN (Cv) and BNF (Cfv). Right: ISI distribution Pb(t) (measured
in ms−1) found numerically for leaky integrate and fire model with feedback. Used 30 000 000 output spikes. Firing threshold,
C = 20 mV, input intensity, λ = 0.1 ms−1, membrane time constant, τM = 6 ms, input impulse amplitude, y0 = 7.5 mV.
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Fig. 6. Left: ISI distribution Pb(t) found numerically for leaky integrate and fire model with feedback. Used 30 000 000 output
spikes. Firing threshold, C = 20 mV, input intensity, λ = 0.1 ms−1, membrane time constant, τM = 3 ms, input impulse
amplitude, y0 = 15 mV. Right: BNF ISI distribution in accordance with equations (4) and (7) displayed for comparison. Here
λ = 0.1 ms−1, τ = 3.3 ms. Both densities are measured in ms−1. Compare also with Figure 3.
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