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Abstract. A theoretical model is proposed to describe 
the influence of a periodic electric field (PEF) upon a 
biopolymer. The biopolymer is treated as a classical 
mechanical system consisting of subsystems (molecu- 
lar groups) which interact with each other through 
potential forces. The PEF is treated as a periodic driv- 
ing force applied to a molecular group. The energy 
dissipation is considered using the model of fluid (vis- 
cous) friction. Arguments for the non-linear character 
of the friction-velocity dependence caused by the non- 
Newtonian rheology of a viscous medium are formu- 
lated. 

A forced molecular-group motion is investigated 
for the situation of a small driving-force period, with 
oscillations overdamped and a driving force consisting 
of more than one harmonic. As a result, it is estab- 
lished that the motion always gets to a terminal stage 
when only a small-scale vibration about some point, 
X*, takes place. The terminal motion is preceded by a 
transient characterized by the presence of a directional 
velocity component and so by a drift along a potential 
profile. The drift goes on until a barrier is met which 
has a sufficiently large steepness (the barrier height is 
not important). As a result, the point X* may happen 
to be remote from the conformation potential local 
minimum (conformational state). The physical reasons 
for the drift are described. 

If we consider the small-scale vibration about X* 
in the framework of the hierarchy of scales for intra- 
molecular mobility, it can be regarded as an "equilibri- 
um mobility", whereas the drift can be regarded as a 
functionally important motion, and X* as a new con- 
formational state which is realizable only in the pres- 
ence of the PEF. It may be concluded, as the result of 
a consistent treatment and neglecting the small-scale 
vibration, that the conformational potential is modi- 
fied by adding a linear term (in the one-dimensional 
case). In this connection, the set of conformational 
states can both deform (deviation of the positions of 
minima and their relative depth) and rearrange quali- 

tatively (some minima can vanish and/or new minima 
can appear). In particular, the transition from one con- 
formation to another one may happen due to rear- 
rangement. 
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Introduction 

At present a wide range of effects, diverse in their phys- 
iological and biochemical manifestations, generated 
by a periodic electric field (PEF) acting on bio-objects 
are known (Andreev et al. 1984; Adey and Lawrence 
1983). It is natural to suppose, in view of the plurality 
of biological consequences produced by a minute PEF 
surface power, that the points of initial application are 
the mechanisms of communication and/or control. On 
the other hand, it is known that the functioning of the 
control (Koshland 1973; Changeux et al. 1984) and 
communication (Koshland 1973; Schramm and 
Selinger ~984) mechanisms on a molecular level is de- 
termined by the specificity of the spatial organization 
and dynamic conformational properties of biological 
macromolecules. That is, the factors which have an 
influence on biopolymer conformational states can, in 
principle, modify specific biochemical controlling ac- 
tions. 

In this paper, a theoretical model is proposed 
which explains the small-period PEF action on biopo- 
lymers through a rearrangement of their conforma- 
tional properties. A biopolymer is treated as a classical 
mechanical system (Burkert and Allinger 1982), con- 
sisting of subsystems (microdomains or molecular 
groups), which are bound to each other by potential 
forces. The local minima of the mutual potential func- 
tion correspond to conformational states. Certain mo- 
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lecular groups are charged (H616ne and Lancelot 
1982), allowing the possibility of interaction with an 
external electric field. In addition, it should be noted 
that owing to the electrical properties of biological 
materials, an external low-frequency field, especially a 
constant one, is perfectly shielded, and does not per- 
meate (Schwan 1983). Thus, the following mechanical 
problem arises: In what way is the potential function 
influenced by the external action of a periodic driving 
force without a constant component? A similar prob- 
lem is known as a "Kapitza pendulum". For the 
Kapitza pendulum it is established that an external 
periodic action induces a potential function modifi- 
cation. Here a non-trivial modification occurs when 
the driving force amplitude is not constant with re- 
spect to a coordinate. In the case of biopolymers it 
could be postulated that the amplitude of an acting 
electric field is constant over the whole space. Never- 
theless, if rotational mobility takes place with high 
rotation angle values, the angle should be taken as a 
configuration coordinate, and the moment of an elec- 
tric force with respect to a rotation axis should be 
regarded as an acting force. In this case the depen- 
dence of the driving force amplitude on a (generalized) 
coordinate will be observed and the potential function 
(in large-scale terms) will be modified by an expression 
which is proportional to the squared driving force am- 
plitude (Landau and Lifshitz 1976). In particular, if the 
pendulum fixed point is subjected to vibration, its up- 
per rest position becomes stable. Concerning biopo- 
lymers in a rapidly oscillating electric field, the above 
mechanism will display a tendency for such an orien- 
tation of charged molecular groups which minimize 
the amplitude of a forced vibration. 

Let us now consider a situation in which the micro- 
viscosity of a protein globule and its surroundings play 
an essential role. Here we shall not suppose any driv- 
ing force dependence on a configurational coordinate 
(although such a dependence is possible). The mecha- 
nism mentioned above does not work then. Never- 
theless, a modification of the potential function may 
occur in this situation as well. The crucial points which 
make the modification possible are the deviation of the 
dissipation law from a linear one and the non-trivial 
driving-force time dependence. In a one-dimensional 
case, the modifying effect of a periodic force results in 
adding a term linear with respect to a coordinate to an 
initial potential function. As a consequence, the con- 
formational properties of a biopolymer may alter ei- 
ther quantitatively (changed position and relative 
depth of the conformational potential minima) or 
qualitatively (individual minima may disappear and/ 
or new minima may appear). In particular, the transi- 
tion from one minimum to another becomes possible 
owing to the modification i.e. the conformational 
switching. 

Energy dissipation under intramoleeular motion 

When intramolecular motion in a globular protein is 
studied the energy dissipation is usually treated using 
the concept of viscous (fluid) friction (Gavish and 
Werber 1979; Beece et al. 1980; Shaitan and Rubin 
1980; Goldanskii et al. 1983; McCammon 1984; Likh- 
tenstein 1985). In this connection the Newtonian rheo- 
logical model is normally used, this provides for the 
friction to be a linear function of the velocity (in accor- 
dance with Stokes Law). When studying the viscosity- 
induced decrease in the barrier crossing rate or the 
well oscillations deceleration, the variations in rheolo- 
gical models appear to be unimportant. In contrast, 
the difference between Newton's model and other 
(non-linear) models becomes fundamental when peri- 
odically driven oscillations are studied. In particular, if 
the medium is not subjected to Newton's model, a 
term non-linear with respect to velocity would appear 
in the equation of motion. It is well known that the 
presence of a term non-linear with respect to the coor- 
dinate X may provide for the solution X (t) to have a 
zeroth harmonic (constant displacement). This, in par- 
ticular, explains a thermal expansion phenomenon for 
solids. A (mathematically) similar mechanism would 
provide for the velocity to have a zeroth harmonic if a 
velocity-non-linear term is present. The direct compo- 
nent of the velocity causes a drift along the potential 
profile. The drift goes on until a barrier is met which 
has a sufficiently large steepness (the barrier height is 
not important). As a result, the molecular group can be 
displaced at a distance much greater than the forced 
oscillation amplitude (cf. an anharmonic case). 
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Fig. 1. ~/~ vs ~ for the so(ution of 2.5 ml polymethylmetacrylate 
in 100 ml dimethylphtalate (Lodge 1964). Here q is the viscosity 
coefficient, ~ is the shearing deformation velocity gradient. The 

value is proportional to the velocity when a body moves in a 
medium, q "~ is proportional to the friction force. The non-linear 
pattern of the dependence shows the non-Newtonian rheology 
and the non-linearity of the friction-velocity dependence 
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At present the investigations for the energy dissipa- 
tion law directly concerned with intramolecular mo- 
bility seem to be rather sparse. Nevertheless, the 
investigation of biological and similar materials (poly- 
mer solutions, liquid crystals) definitely prove that 
Newton's  rheological model is not adequate in the 
context considered (Seifriz 1952; Lodge 1964; Barid 
1978). As an example we consider the dependence of 
the product 91/ (where 9 is the deformation velocity 
gradient, t? is the viscosity coefficient) on 9, derived 
from data in (Lodge 1964) for a solution of polyme- 
thylmetacrylate in dimethylphthalate. (9 value is pro- 
portional to the velocity when a body moves in a me- 
dium, 97 is proportional to the friction force). It 
follows from the curve pattern (Fig. 1) that the friction 
depends on the velocity in a non-linear manner. In 
native conditions many biopolymers are integrated 
into a bimolecular lipid membrane, which represents a 
bilayer liquid crystalline smectic phase (Bouligand 
1978). Globular protein as a material may also be con- 
sidered as an aperiodic liquid crystal, having in mind 
its structural determincy and low activation energy for 
internal motions. However, the liquid crystals rheol- 
ogy is definitely not Newtonian (Barid 1978). 

From the above it follows that a biopolymer oper- 
ates in non-Newtonian rheological conditions. Let us 
make use, for a fluid medium, of a simple model differ- 
ent from the Newtonian one. This model is known as 
a "non-Newtonian fluid" (Reiner 1971). The only 
deviation from Newton's model here is that the viscos- 
ity coefficient depends on the velocity and as a conse- 
quence the friction force depends on the velocity in a 
non-linear manner. 

Modification of the potential function 
caused by periodic action 

We consider the simplest situation when for an inter- 
nal motion in a biopolymer there is only one degree of 
freedom, X. The existence of a few conformational 
states is provided by a potential function which de- 
pends on X and has several minima (for example, as in 
Fig. 2). In this case the molecular-group motion under 
the action of an external periodic electric field is de- 
scribed by the following differential equation 

mJ~(t) + A X (t) - E g(YC (t)/Vo) 

= Fof(t/T) - eP o ¢p (X (t)/Xo), (1) 

where the following notation is used: X (t) = (d/d0 X (t) 
is the velocity, m is the mass of a molecular group; A 
is the coefficient of linear friction; E, V0 and the non- 
dimensional function g characterize the non-linear 
friction component  due to the deviation from Newto- 
nian rheology; ~o, Xo and the non-dimensional func- 
tion ~0 characterize the force produced by a conforma- 

tional potential; Fo, T and the non-dimensional func- 
t ionfcharacterize the driving force produced by PEF 
(of period r). Here f is periodic: f ( t + _ l ) = f  (t), 
[ f  ( t ) l -  < 1, and has no constant component: 
1 

f ( t )  dt = 0. (2) 
0 

The situation is thought to be natural when the well 
oscillations of a molecular group are overdamped 
(Shaitan and Rubin 1980; Morozov and Morozova 
1983; McCammon 1984). For quantities occurring in 
(1) the overdamping means 

m ~o* ~o/(A 2 Xo) ~ 1 , (3) 

where ~* is the maximum value of the derivative of ~0. 
The behaviour of the solution X(t)  for Eq. (1) is in- 
vestigated under the condition (3) (Vidybida 1986; 
1987). 

When solutions for Eq. (1) are investigated the fol- 
lowing condition is supposed to be valid, in addition to 
(3): 

A Tim ~ 1. (4) 

It follows from a more precise consideration that (4) 
together with (3) may be replaced by 

C (A T/m) m ~o* q%/(A 2 Xo) ~ 1, (*) 

where C (2) = 2 (3 - 2 exp ( -)0)/(1 - exp ( -  2)). When 
2 = A Tim ~ 1, C (2) ~_ 1 and (*) coincides with (3). Con- 
versely, when 2 > 1, C (2) -~ 3 2 and (*) converts into the 
inequality 

3 Tq~* q~o/(A Xo) ~ 1 (**) 

which should replace (3). 
The physical meaning of inequalities (3) and (**) 

may easily be established when we draw an analogy 
with the harmonic potential situation. Choosing 
p X2/2 as a potential function, we have 45 o = P X o ,  
~o*= 1 and (3) turns into m P / A : ~  1, while (**) turns 
into 3 P T/A ~ 1 where T is a driving force period. 

The final solution for Eq. (1) (when t > T and the 
initial conditions are forgotten), as was established, 
represents small-scale oscillations of X (t) about  a cer- 
tain point X*. The final stage of motion is preceded by 
a transient when the directed drift takes place: 

1 i 2 (t) dt V* ¢ 0.  (5) 
T o  

As a result, the point X* which characterizes the final 
regime may be displaced from a potential local min- 
imum at a distance much greater than the final oscil- 
lation amplitude (cf. an anharmonic case). 

To interpret the described trajectory behaviour in 
terms of intramolecular mobility, it should be kept in 
mind that for biopolymers, especially for globular pro- 
teins, the hierarchy of scales for internal motion is 






