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A B S T R A C T

What is the reason for complex dynamical patterns registered from real biological neuronal networks? Noise
and dynamical reconfiguring of a network (functional/dynamic connectome) were proposed as possible
answers. In this case study, we report a complex dynamical pattern observed in a simple deterministic network
of 25 excitatory neurons with fixed connectome. After a short initial stimulation, the network is engaged into a
complex dynamics, which lasts for a long time. Eventually, with no external intervention, the dynamics comes
to a periodic one with a short period. The long transient is positively checked for being chaotic. We conclude
that the complex dynamics observed is the output of neural computation performed in the process of neuronal
firings and spikes propagation.

1. Introduction

Chaotic dynamics in the brain have been observed for a long time,

for example, in electroencephalography (EEG) during sleep (Babloyantz

et al., 1985) and olfactory perception (Skarda and Freeman, 1987).

Further investigations reported chaotic dynamical patterns at all levels

of a brain down to single cells and their membrane conductances,

see references in Korn and Faure (2003). Chaos is now recognized

as a normal state of a living organism (Pool, 1989). Furthermore, in

most cases, excessive rhythmic (non-chaotic) activity in the brain is

considered as a pathology and should be corrected (see e.g. Schiff et al.,

1994 where a possibility for correction is reported).

Several mechanisms of electrical, chemical and biological nature are

able to shape dynamics in a biological neural net, see survey in Break-

spear (2017). In this report, we describe a complex dynamics in a fully

connected deterministic network of 25 leaky integrate-and-fire (LIF)

excitatory neurons placed at lattice nodes, Fig. 1. Propagation delays

are taken proportional to the interneuronal distances. The network is

initially stimulated with a short sequence of 25 input impulses, each

triggering one of the 25 neurons. The sequence of the triggering mo-

ments constitutes the stimulus specificity. After the initial stimulation,

the network runs on its own, without external influence and with

no plasticity. A stimulus has been found which triggers a prolonged
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seemingly chaotic behavior of the network’s state parameters, such
as neuronal voltages or interspike intervals. This type of dynamics
lasts several orders of magnitude longer than the longest interneuronal
communication delay. After that, the dynamics becomes periodic with
a short period. In order to analyze the transient observed, we apply
several tests for complexity and chaos to it. These tests are as follows:
0-1 test by Gottwald and Melbourne; permutation entropy; spectral
entropy; sensitive dependence on initial conditions. All tests support
the idea that the initial transient is chaotic. This kind of activity looks
like an example of the transient chaos, Tél (2015). Remarkably, none
of the used tests was able to predict based on the initial chunk of the
transient whether the dynamics will fade or settle on a periodic mode
and how long could it take. These questions will be addressed in further
work.

2. Methods

2.1. Neural network

The network is similar to that used for numerical simulations in our
previous paper (Vidybida and Shchur, 2017). The only difference is the
number of neurons (25 instead of 9, see Fig. 1). Similar to Vidybida
and Shchur (2017), simulation is made with time step dt = 0.1 msec.
Henceforth, we use the term ‘‘tick’’ both for duration of the time step,
and for the process of advancing the network’s state for one time step.
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Fig. 1. Network used for simulations. All neurons are identical leaky integrate-and-fire
excitatory neurons, with threshold voltage Vtℎ = 20 mV, input impulse height ℎ = 0.999

mV, membrane time constant �M = 20 msec. The neurons are simulated with integer
numbers as described in Vidybida (2019). Each of 25 bars indicate initial position in
time of a triggering impulse from the stimulus.

2.2. Stimuli

Initial stimulation of the network is performed by applying a se-
quence of 25 identical triggering impulses, each for a corresponding
neuron. The triggering impulse has magnitude greater than the firing
threshold, thus able to trigger its target neuron immediately.1 The
stimulus used in this case study is displayed in the Figs. 1, 2. The
stimulus can be depicted as usual as a spike-train, see Fig. 2 (right), but
each triggering spike in the train is destined for its own neuron. Thus,
due to initial stimulation, each neuron obtains single triggering input
impulse at a specified moment. The set of all 25 triggering moments
constitutes the stimulus specificity. After the stimulus is discharged
entirely (it takes 4 msec for the stimulus used), the network’s dynamics
unfolds on its own. No further external intervention is involved and no
plasticity or noise is considered.

2.3. Data acquisition

During free run after stimulation, the network state at any moment
consists of 600 integers characterizing states of all 600 interneuronal
connections, and 25 × 4 integers characterizing states of all 25 neurons.
The state of a connection is represented by a single integer indicating
after how many ticks the propagating spike will reach its target neuron.
If a connection does not convey a spike, its state is marked as -1. In the
state of a neuron, the first two integers represent depolarization with
whole numbers. The other two report whether the neuron is in fire

or empty state, see details in Vidybida (2019). In order to determine
the moment when a periodic regime starts, we add the network state
after each tick to a C++ container (actually, the hash of a state) until
we meet the state, which is already in the container. The moment of
the first appearance of that state is just the moment of entraining onto
a periodic regime. After finding an interesting trajectory, we write it
on a disc and analyze by several methods.

3. Results

3.1. Dynamics observed

If stimulated with stimulus displayed in Figs. 1, 2, the network
demonstrates the following behavior. During long time (1569.4821 s =
26 min 9.5 s) the dynamics is seemingly chaotic. This can be seen from
histograms of interspike intervals (ISIs) for a single neuron in different
chunks of the transient, Fig. 3, and the sets of inter-spike intervals for

all 25 neurons, Fig. 4(left), and from the time course of the compound
voltage Vsum, Fig. 5(left), where

Vsum =

24∑

i=0

vi , (1)

and vi is the voltage in the neuron # i. Then, within a short time (less
than 3 s), dynamics simplifies and eventually turns into periodic with
period duration of 10.4 msec. In the periodic regime, 24 of 25 neurons
fire with constant ISI duration 5.2 msec. One neuron fires ISIs 5.1 and
5.3 msec long alternately, e.g. Fig. 4(right). We consider the duration
of the transient as relatively long. Indeed, time needed for a spike to
cross the diagonal is 5.7 msec, Fig. 1. Thus, the diagonal crossing may
happen 1569.4821 sec/5.7 msec = 275348 times before the dynamics
settles down to periodic regime. Such a long transient appears as an
independent self-reliant dynamics, which can be analyzed separately.

3.2. Analysis

In order to analyze the dynamics, we have chosen 10 chunks of the
trajectory in the following way. Each chunk has the same duration.
Chunks 1..10 follow one another and chunk # 9 ends just at the
beginning of periodic regime. At this same moment chunk #10 starts,
see Fig. 6. Three different durations of chunks have been considered,
namely, 5200 ticks (50 periods) and 15600 ticks (150 periods), as well
as 1743869 ticks (the first nine chunks cover the transient part of the
trajectory entirely). As a parameter to analyze we take voltage at a
single neuron, vi, i = 0,… , 24, (several neurons have been tested) and
the sum of all 25 voltages, Vsum, (1), which is the analog of the local
field potential. Since results are similar for different parameters, we
present them only for Vsum (see below).

3.2.1. 0-1 test for chaos
Here we use the binary test for chaos proposed by G. A. Gottwald

and I. Melbourne, Gottwald and Melbourne (2009). In this test, a
sequence of data

V = {V0, V1,… , VN−1} (2)

can be checked for being chaotic or regular. In our case Vi = Vsum(i),
where i = 0, 1, 2,…N − 1, is a tick number within a chunk and N is
the chunk length. V is considered as being either regular or chaotic
depending on the behavior of auxiliary two-dimensional trajectory

(pc (n), qc (n)), n = 0, 1,… , N − 1 (3)

constructed from V as follows:

pc (n) =
∑

0≤i≤n

Vi cos(i ⋅ c), qc (n) =
∑

0≤i≤n

Vi sin(i ⋅ c) . (4)

Here c is a real number from a set of 1000 equidistant values in
the interval (0, �). If the mean square displacement of (pc (n), qc (n))

asymptotically grows linearly with n, then V is considered chaotic,
otherwise if (pc (n), qc (n)) stays in a bounded domain, than V is regular.
The asymptotic mean square displacement is defined in Gottwald and
Melbourne (2009, Eq. (2.1)) as follows:

Mc (n) = lim
N→∞

1

N

∑

0≤k<N

(
(pc (k + n) − pc (k))

2 + (qc (k + n) − qc (k))
2
)
, (5)

which expects infinite number of points in V. In our case, we have a
finite number of points from the end of stimulation to the entrainment
onto the periodic regime. Moreover, we analyze dynamics in 9 consec-
utive chunks before the periodic regime starts, see Fig. 6. This limits
possible value of N in (5) by 1743869. Thus, the modified for our case
mean square displacement in each chunk is calculated as follows:

Mc (n) =
1

N1

∑

0≤k<N1

(
(pc (k + n) − pc (k))

2 + (qc (k + n) − qc (k))
2
)
, (6)
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Fig. 2. Initial stimulus used. Left: X-coordinate of a dot indicates the moment at which input triggering spike enters a corresponding neuron; Y-coordinate is the corresponding
neuron number. Right: the same stimulus displayed as a spike train. Numbers under a spike indicate neurons triggered by this spike.

Fig. 3. The ISIs histograms for the chunks # 1-9 for the neuron # 24. Here, chunk duration is 0.52 s. Grid lines in all figures correspond to the ISI duration 5.2 msec. Note that,
in the periodic regime, the neuron # 24 fires with constant ISI duration 5.2 msec.

Fig. 4. Sets of most recent ISIs for all 25 neurons at time moments specified above as ‘‘age’’. Typical ISI set in chaotic (left, 3 s to periodic regime) and periodic (right) regime.
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Fig. 5. The time course of the compound voltage after establishing the periodic regime (right, two periods long), and 3 s earlier (left).

Fig. 6. Chunks used for calculations. Several chunk durations have been tested, see main text.

Fig. 7. Behavior of the correlation coefficient Kc as a function of c-value. Left: chunk #9, right: chunk #10 (periodic regime). Here, chunk duration is 0.52 s; 1000 equidistant
values of c ∈ [0;�] were used for calculations.

Table 1
Result of 0-1 test for chaos in each chunk. Here, chunk duration is 0.52 s.

Chunk number 1 2 3 4 5 6 7 8 9 10

Median of Kc 0.992 0.994 0.993 0.994 0.993 0.994 0.993 0.994 0.992 0.026

where n = 0, 1,… , n1 = 1000, and the following condition is satisfied:

N1 + n1 ≤ N,

where N is the chunk length. Mean square displacement Mc (n) os-
cillates with n, which impairs convergence. The oscillations can be
subtracted from Mc (n) as it is proposed in Gottwald and Melbourne
(2009, Eq. (2.3)). The resulting quantity Dc (n) is checked for linear
growth by correlation method, see Gottwald and Melbourne (2009,
Sec. 3.2). The correlation coefficient Kc between sequences {1, 2,… , n1}

and {Dc (1), Dc (2),… , Dc (n1)} is calculated for different values of c, and
median in the obtained set Kc was found. Resulting median for the first
nine chunks of the trajectory is close to 1 (see Fig. 7, Table 1) qualifying
those chunks as chaotic. All three values for N mentioned above in
Section 3.2 were tested with n1 = 1000. The results are similar.

3.2.2. Permutation entropy
Complexity of trajectory Vsum(t) in different chunks was also an-

alyzed by calculating permutation entropy in each chunk. The per-
mutation entropy method is proposed for estimating complexity of

trajectories of a dynamical system, see Bandt and Pompe (2002). In
order to apply this method to a sequence of data (2), one needs to chose
an embedding dimension D > 1 and create a sequence of embedding
vectors V = {V0,V1,… ,VN−D}, Vi ∈ RD, i = 0, 1, 2,…N − D,
where Vi = (Vi, Vi+1, Vi+2,… , Vi+D−1). An additional parameter of the
embedding procedure is delay, which we choose 1 here. Further step
in the method is to find for each Vi a permutation �i, which arranges
its components in ascending order. �i is called the order pattern of
Vi. Having a sequence of order patterns � = {�0, �1,… , �N−D}, we
calculate the probability pi of any of D! possible patterns by dividing
the number of its occurrences in � by the total number of elements
in � . The permutation entropy of V is the Shannon entropy of the
probability distribution p(�i):

S(V) ≡ S(�) = −

M−1∑

i=0

p(�i) log(p(�i)),

where M is the number of different permutations in the � . In this
work we use a modification of this method, namely arithmetic entropy,
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Fig. 8. Permutation entropy for different embedding dimensions D calculated for Vsum

in chunks shown in Fig. 6. M is the maximal value of the permutation entropy for
each D. Here, chunk duration is 0.52 s. The embedding delay � = 1.

which is exempt of combinatorics, see Vidybida (2020). Both methods
deliver the same value for entropy provided that in any embedding
vector all D components are different, see Vidybida (2020, Theorem
A.1). In our simulation, we registered voltages with nine decimal
places, therefore equalities are improbable. Additionally, we checked
for equality between components of embedding vector and observed
none in Vi. The resulting entropy values are shown in Fig. 8. From these
data we see that the trajectory Vsum(t) has high complexity, roughly the
same for the first 8 chunks. In the ninth chunk, complexity decreases
slightly, and falls to lower values at the tenth chunk. In the periodic
regime, the permutation entropy is still considerably high. This can be
understood having in mind that the periodic regime itself is still quite
complex, see Fig. 5 (right). For embedding dimensions considered,
except of D = 3, periodic part of the trajectory produces enough
different order patterns.

3.2.3. Spectral entropy
Spectral entropy is one of nonlinear dynamics and chaos theory

methods used to analyze EEG signals, Rodríguez-Bermúdez and García-
Laencina (2015). Different entropy measures can be used to detect
epileptic seizure on EEG. In a review (Rajendra Acharya et al., 2015),
it was concluded that the spectral entropy is among the best entropy
measures to perform in this task. Also different entropy measures,
including the spectral entropy, are used to classify emotions from EEG
in a brain–computer interface, see recent review (Patel et al., 2021).
Additionally, applied to local field potential measurements, correlation
of time varying spectral entropies is used to detect synchrony in neural
networks (Kapucu et al., 2016). Therefore, we have tested the transient
with this method.

Firstly, different chunks of the trajectory Vsum(t) were analyzed by
calculating the spectral power density (PSD) and subsequently the
power spectral entropy (PSE). The algorithm used to calculate PSD is as
follows. In the current work, during the course of computer simulation,
the sum of voltages of all 25 neurons Vsum (1) was sampled at discrete
times with step dt. For one chunk, sampled Vsum is given by V as in (2)
with N = 5200, where N is the size of a chunk. Firstly, one needs to
calculate the discrete Fourier transform of the sequence V:

Ṽ = {Ṽ0, Ṽ1,… , ṼN−1}. (7)

Then, from the discrete Fourier transform of V, the PSD at the
frequency fk =

k

Ndt
, k = 1,… , N∕2, can be calculated using the

following expression:

PSD(fk) =
|Ṽk|

2
dt

N
. (8)

The PSD was calculated for all ten chunks. For the chunks #1
and #10, the PSD is depicted on Fig. 9. Note that on the chunk #10
(periodic activity, lower panel of Fig. 9) the frequency 1/5.2 kHz and its
harmonics have the most power, while on the chunk #1 (upper panel
of Fig. 9) wide peaks in the vicinity of the frequency 1/5.2 kHz and its
harmonics are present.

The PSE, or the Shannon spectral entropy, is an application of
Shannon entropy expression to the power spectral density compo-
nents (Rajendra Acharya et al., 2015). To calculate the PSE, the PSD
is usually normalized with the total power:

PSDnorm(fk) =
PSD(fk)

N∕2∑

l=1

PSD(fl)

. (9)

Then the power spectral entropy is given by the following formula:

PSE = −
1

log2 (N∕2)

N∕2∑

k=1

PSDnorm(fk) log2
(
PSDnorm(fk)

)
. (10)

Note that here the PSE is normalized with log2 (N∕2), which is the
maximal PSE of a white noise having equal intensity at all frequencies.

The normalized PSE was calculated for chunks #1-10. The results
of calculations are depicted on Fig. 10. The PSE is roughly the same for
the chunks #1-9 during the relaxation to periodic activity, and sharply
drops on the chunk #10 for periodic activity.

3.2.4. Sensitivity to small perturbations
It is known that for chaotic dynamical systems small perturbations

of initial state are able to produce a large divergence of resulting
trajectories. In our case, initial state is achieved at the end of a stimulus
applied to the standard state with empty neurons and axons. Naturally,
a small difference between initial stimuli results in a small difference
in the network’s initial state. Therefore, and having in mind that a
network is aimed at processing initial input into an output, we consider
here small perturbations of the initial stimulus. A stimulus specificity
is determined by moments of initial triggering of each neuron, see
Fig. 2. Since we have a finite time step dt = 100 μs, the smallest
possible perturbation of the stimulus can be prepared by shifting trig-
gering moment of a single neuron by ±dt. This gives 50 different
stimuli/cases characterized by the smallest possible deviation from the
initial one. Each perturbed stimulus was applied and resulting dynamics
was analyzed. The analysis summary is presented in the Table 2, see
also the Table 3, where simulation is made for increased synaptic
strength. We see that some of the perturbed stimuli cause dynamics
which ends up with periodic regime with other period duration than
the unperturbed one. This can be treated as sensitive dependence on
initial conditions/stimulus, which characterizes chaotic dynamics. In
this study, we did not compare terminal (periodic) dynamics within
the pool of those with the same period duration. Previously, Vidybida
and Shchur (2017), we observed several types of qualitatively different
dynamics with the same period. This might be an additional argument
in favor of sensitive dependence on the initial conditions.

4. Conclusions and discussion

In this report, in a simple deterministic neural network simulated
on a PC, we have observed a remarkable dynamics in which, after a
short initial stimulation, a chaotic transient comes to a periodic activity.
We have checked the transient observed for being chaotic by several
known methods. In this connection it should be noted that standard
definition of chaos is made for systems with continuous trajectories in a
metric space (see a discussion of the exact Devaney’s definition of chaos
in Banks et al., 1992). In our case, trajectories are not continuous: each
neuronal firing produces a discontinuity. Also, due to the numerical
modeling, our trajectories are confined in a finite set of state points.
Therefore, straightforward application of the chaos definition made for

This plot is not correct,

see the correct one

at the end
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Fig. 9. The power spectral density (PSD) of the sum of voltages of all 25 neurons Vsum(1) calculated on the chunks # 1 (upper panel) and #10 (lower panel). Only frequencies
up to 1 kHz are shown. Grid lines in both figures correspond to the frequency 1/5.2 kHz and its harmonics.

Fig. 10. The normalized power spectral entropy (PSE). X-coordinate of a star indicates
the chunk number.

Table 2
Results of checking stability with respect to the perturbations of the initial stimulus.
All 50 cases of minimally perturbed initial stimulus plus the initial stimulus itself
are presented. The column #3 indicates the number of perturbed stimuli resulting
in periodic dynamics with the period duration specified in the column #1. The initial
(unperturbed) stimulus case is added in the corresponding row (period duration is 10.4
ms).

Period, ms Number of spikes
each neuron emits
per period

Number of cases Relaxation time, s

0
(activity fades)

0 2 0.08, 0.09

9.6 2 3 60 – 436
9.7 2 2 30, 257
9.8 2 2 344
10.0 2 2 368
10.4 2 35 26 – 1569 (26 min)
41.6 8 5 36 – 722

Table 3
Terminal regimes found for the same set of stimuli as in the Table 2, but in the
network with the synaptic strength increased from ℎ = 0.999 mV to ℎ = 1.0 mV. The
initial stimulus ends up in this case with period duration 41.6 ms instead of 10.4 ms.
The relaxation times here are between 0.045 min and 9.85 min.

Period, ms 6.3 9.6 9.8 10.0 10.4 28.8 29.0 41.6

Number of cases 1 9 2 3 5 2 1 28

continuous systems does not make sense in our case. The methods

applied here (0-1 test for chaos, spectral and permutation entropy

estimates of complexity) do not expect continuity and can be applied to

discontinuous trajectories. The appealing property of chaos known as

sensitive dependence on initial conditions expects a possibility to con-
sider infinitesimally small perturbations of initial conditions, see Banks
et al. (1992). In our case, the smallest possible perturbations are finite.
Some of these perturbations result in trajectories differing qualitatively
from the unperturbed one, see Tables 2 and 3.

In a real biological network, a regime ending with a periodic activity
would be a real disaster (maybe, except of a central pattern generator).
A real biological network has various mechanisms for interrupting
perfect periodicity. Among those mechanisms, the stochastic nature
of activity will break periodicity, as it could also be supposed by
comparing either rows in the Table 2, or columns in the Table 3, where
sensitivity to small perturbations is demonstrated. Also plasticity, like a
change in the synaptic strength, could result in the change of a terminal
regime. This can be seen in our specific case by comparing the whole
Table 2 with the Table 3. Also, real biological network obtains either
internal or external stimulation, or both all the time. Furthermore, the
stimulation can be also chemical. Taking additionally into account that
we consider the fully connected network, it would be difficult, if not
impossible, to link the dynamics studied to a concrete observation made
on a living object.

Our aim was to uncover the neural computation that can be per-
formed in such a simplified, stripped of some essential biological fea-
tures network. A natural question arises: What is meant under the
neural computation in the context of this paper? In order to propose
something grounded in the real world, like ‘‘the fruit fly computes
its path to the apple’’, it would be necessary to endow our randomly
generated stimuli with some real meaning, and to interpret the net-
work’s activity in terms of a specific purpose. This was not a goal
of this study. There are several views on possible mechanisms of the
neural computation, see Piccinini and Bahar (2013). We share the one
expressed in Piccinini and Bahar (2013) that ‘‘neural computation is
sui generis’’. Correspondingly, as the neural computation in our par-
ticular case we mean the transformation of spatio-temporal pattern
of activity in the network due to the neurons receiving impulses,
firing and sending them out, see also Izhikevich (2006). Observation
of very long transients, which look as being chaotic, shows that an
extremely simplified recurrent neural network is able to perform rather
complicated computations.

Does this kind of behavior is typical for a network of this type?
Firstly, it should be mentioned that the states space of the network
studied is really big: it is composed as the product of state spaces of
all 25 neurons and 600 axons. Therefore, the network’s trajectory has
enough possibilities to go through the space without reproducing one
of its previous states. This may take a long time. But, as it can be seen
from the Table 2, it is not necessary to exhaust all possible states in
order to reproduce one previously passed state for the second time



�✁✂✄☎✆✝✞✟✆ ✠✠✡ ☛✠✡✠✠☞ ✌✡✍✎✏✑

�

A. Vidybida and O. Shchur

indicating that the dynamics is already in a periodic regime. Usually,
a stimulus sends the network to a terminal regime much faster. Our
empirical observations indicate that, in the considered network, 10 to
15 randomly generated stimuli applied to the network, starting each
time from its initial state, are enough to find a mode with a transient
around 10 min long.

This is not the first observation of this type in a simulated neu-
ronal network, see, e.g. Zumdieck et al. (2004), Zillmer et al. (2009).
In Zumdieck et al. (2004), networks of phase oscillators are studied.
The nature of a phase oscillator neuronal model is such that it produces
output spikes even without external stimulation. This allowed not to
use external stimuli at all. The authors observed long transients depend-
ing on the initial state chosen in diluted networks of up to 100 neurons
with identical interneuronal transmission delays. It is impossible to
compare the duration of those transients with ours because the time
unit is not specified in Zumdieck et al. (2004). Also, long chaotic
transients were absent in Zumdieck et al. (2004) for globally coupled
case considered here. In Zillmer et al. (2009), a network of up to 10 000
inhibitory neurons is considered. Due to the absence of excitatory neu-
rons, a permanent drive is required for the dynamics not to fade. The
drive is chosen as the same constant excitatory current applied to each
neuron. The interneuronal transmission delays are all taken to be 2 ms.
Depending on initial conditions, chaotic transients of up to 10 min long
were observed. In both studies, terminal state is characterized by a high
degree of synchronicity between individual neurons. This is not the
case for our network: in the periodic regime, neurons fire at different
moments, but with the same mean frequency. Our simulation protocol
is to apply a stimulus and to follow the network’s dynamics. The
absence of stimuli in Zumdieck et al. (2004), Zillmer et al. (2009) does
not make a big difference with our case: initial states used in Zumdieck
et al. (2004), Zillmer et al. (2009) can be thought as prepared by some
initial stimuli remaining behind the scene. In our case, the initial state
is always the same — the network is free of any activity.

Reasons for a neural network to reproduce chaos could be various,
see Faure and Korn (2001) for discussion. Our modeling algorithm
operates in whole numbers, thus excluding a possibility of rounding
errors. Also, no noise is considered. It seems that the only reason for
complex behavior in our network is the neural computation performed
due to neuronal firings and resulting in rearrangement of interspike
intervals in accordance with the rules imposed by the interneuronal
communication delays and the LIF neuronal model parameters. This is
a self-organization in the time domain envisioned by D. M. MacKay,
(MacKay, 1962). Our finding is that in a network, the process of self-
organization can be quite long, passing through complex states and
essentially dependent on the initial stimulus. Also, in a network, self-
organization happens not only in the time, but also in the space domain.
This is because it was observed that in some cases terminal regimes
with the same period duration may have different spatial patterns of
activity: neurons fire in different order and with different intervals
between them. In our previous work (Vidybida, 2011; Vidybida and
Shchur, 2017) made for smaller networks similar behavior has been
observed, but with shorter transients.

In this connection a question arises: To what extent does the struc-
ture of a neuronal network (‘‘connectome’’, Sporns et al., 2005) de-
termine its function? From the point of view of physics the answer
should be the following: completely. But it has appeared quite difficult
to map brain structure to its function (if function is considered as a
concrete dynamics evoked by a concrete stimulus) based exclusively
on the connectome. The idea of a ‘‘dynome’’ was proposed as some
additional rules governing the dynamics, (Bargmann and Marder, 2013;
Kopell et al., 2014). In parallel, concepts of ‘‘functional connectome’’,
(Biswal et al., 2010), or ‘‘dynamic connectome’’, (Quiroga, 2020), were
proposed. In these concepts, connections in the brain can be func-
tionally/dynamically reconfigured depending on the cognitive task, or
neuromodulator presence. As a result, complex brain dynamics are
generated. The case reported here, see also Vidybida (2011), Vidybida

and Shchur (2017), demonstrates that complex, stimulus dependent
dynamic repertoires can also be generated without external inter-
vention in a deterministic recurrent network with fixed connectome
exclusively due to the numbers game performed in the process of neural
computation.
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