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Although a neuron requires energy, its main function 

is to receive signals and to send them out – that is, 

to handle information. - F. Crick, The Astonishing 

Hypothesis, 1994

The brain ability to perform meaningful signal pro-

cessing tasks related to perception, pattern recogni-

tion, reasoning is normally attributed to large-scale 

neuronal networks. The main signals involved in the 

instantaneous neural processing are neural impulses, 

and the units, which process impulses in a network, 

are individual neurons. We now put a question: In the 

context of higher brain functions, like perception, what 

is a meaningful task a neuron performs with the signals 

it receives? Another question: Does the inhibition exist 

for taming neuronal activity only, or it can be endowed 

with a more intelligent signal processing role? In 

this article, we propose an abstract concept of signal 

processing in a generic neuron, which is relevant to 

the features/events binding well known for large-scale 

neural circuits. Within this concept, action of inhibition 

obtains its natural signal processing meaning.

%$&.*5281'

/RZ�/HYHO�&RQFHSWV�RI�6LJQDO�
3URFHVVLQJ�LQ�D�1HXURQ

The main part of any biological neuron is the excitable 

membrane. The membrane is able to generate electrical 

(neural) impulses, if proper stimulated, and to propagate 

those impulses over long distances without attenuation. 

The low-level concepts are concerned with electro-

chemical characteristics of initiating and propagating 

of the impulses. These concepts are expressed in the 

form of differential equations, which govern the time 

course of the transmembrane potential.

+RGJNLQ�DQG�+X[OH\�(TXDWLRQV

If 6  denotes the displacement of the transmembrane 

potential of the excitable membrane from its resting 

state, then its time course is defined by the transmem-

brane currents as follows:

dV

dt C
I

M k

n

k
= − ,

=

∑
�

�

 (1)

where N  is the number of different ionic currents 

considered, C
M

 is the capacity of the membrane unit 

surface and I
k

, k … n= , , ,�  denote ionic currents 

through that surface. In the Hodgkin and Huxley (H-H) 

model, (Hodgkin & Huxley, 1952), three currents were 

considered, namely, the potassium, sodium and leakage 

current. These currents depend on the 6  by the fol-

lowing way:
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where g V
k k
, , k "K" "Na" "l"∈ , ,{ } are time-inde-

pendent. The so called gating parameters m n h, ,  

depend on T  in accordance to the following equations:
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Here parametersα β
K K
, , k "h" "m" "n"∈ , ,{ } ,de-

pend on 6  in a nonlinear manner, see (Hodgkin & 

Huxley, 1952) for the exact expressions. The system 

(1)–(3) has resting state with 6 = � . The temporal 
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dynamics is usually introduced into (1)–(3) through a 

choice of proper initial conditions with a nonzero 6  

value. This corresponds to experimental manipulation 

known as the voltage clamp method. After the voltage 

clamp is released, the temporal dynamics of 6  can 

be observed either experimentally, or by solving (1)–

(3) numerically.

The remarkable feature of the H-H set of equations 

is that if the initially clamped value of 6  corresponds 

to depolarization and is high enough, then the dynam-

ics itself builds up further depolarization up to a defi-

nite value, 6
peak

, and then returns to its resting state. 

This transient process is known for real neurons as the 

action potential, or spike, and it constitutes the essence 

of the neural impulse, when propagates along the 

membrane of a neural fiber, (Hodgkin, 1971). Both 

for real neurons, and for the set of Equations (1)–(3) 

neither the time course of the action potential, nor its 

peak value does depend on the initially clamped value 

of 6 . Moreover, the time course of the action poten-

tial obtained by solving (1)–(3) is in perfect correspon-

dence with that observed experimentally for the giant 

nerve fiber of squid (see Hodgkin & Huxley, 1952, 

Figs 13, 14).

The ideas of H-H equations received further de-

velopment in several directions. First, additional ionic 

currents found in other neurons and the dynamical 

properties of corresponding ionic channels are added 

to the (2) and (3) (Huguenard & McCormick, 1992). 

Second, spatially distributed (compartmental) equa-

tions are considered in order to fit with morphology of 

real neurons (De Schutter & Bower, 1994). Third, for 

simplification of mathematical analysis, a reduced sets 

of equations were offered, which has lower dimension 

than (1)–(3), and still is suitable for generating spikes 

(FitzHugh, 1961).

/HDN\�,QWHJUDWH�DQG�)LUH�0RGHO

In the Leaky Integrate and Fire (LIF) neuron model 

(Stein, 1967; Knight, 1972), the membrane voltage 

time course is governed by the following differential 

equation:

dV

dt C
I t

R C
V

M M M

= − ,
1 1
( )  (4)

where the first term corresponds to stimulating current 

due to input impulses and the second one – to expo-

nential decay due to leakage. The model is addition-

ally characterized with a threshold voltage, V
th

. If 6  

surpasses the V
th

, then the neuron emits an impulse 

and 6  is reset to standard value, usually 0. The 

model has numerous modifications (Burkitt, 2006). 

The LIF model appeared to be quite useful for study-

ing statistics of activity in individual neurons and 

neuronal populations.

The low level models were designed for quantitative 

description of membrane voltage and currents inter-

play. Any low level model retains a possibility to fire 

an output impulse (spike). The decision to fire or not 

is made based on the membrane voltage time course. 

At the same time, the output impulses emitted from a 

neuron are identical, bearing the only label – the emit-

ting moment. The same should be expected about the 

input impulses for a neuron embedded in a neuronal 

network1. If so, then it would be natural to formulate 

the firing criterion in terms of arriving moments of 

the input impulses.

',5(&7�5('8&7,21�72�/2:�
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The understanding of mechanisms of higher brain 

functions expects a continuous reduction from higher 

activities to lower ones, eventually, to activities in 

individual neurons, expressed in terms of membrane 

potentials and ionic currents. While this approach is 

correct scientifically and desirable for applications, 

the complete range of the reduction is unavailable to a 

single researcher due to human brain limited capacity. 

An attempt to describe a task solving within a brain in 

terms of membrane potentials and ionic currents would 

be similarly hopeless as to describe in terms of Kirch-

hoff’s point and loop equations a program execution 

in a computer. In the computer circuits design, many 

abstractions, like NAND-gate, NOR-gate and so on, 

are used. The gates can be constructed as electrical or 

optical cells, but the hardware description language 

(see Shahdad, Lipsett, Marschner, Sheehan, & Cohen, 

1985) deals only with abstract logical essence of the 

gate concept while concrete physical mechanisms 

employed are studied within another branch of science.
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In analogy with computer science, it seems useful 

to abstract from the rules by which a neuron changes its 

membrane potential and currents to rules by which the 

informational signals, which are neuronal impulses, are 

processed in the neuron. The required abstraction can 

be derived by analysis, based on low level mechanisms, 

of how a neuron receives and sends out impulses.

The two abstract concepts, namely, the “coincidence 

detector” and “temporal integrator” are offered in this 

course (Abeles, 1982; König, Engel, & Singer, 1996). 

Both do not involve inhibition. Also, a realistic neuron 

can display both coincidence detector and temporal 

integrator modes of activity depending on the stimula-

tion applied (see Rudolph & Destexhe, 2003).

7+(�%,1',1*�1(8521�&21&(37

7KH�%LQGLQJ�3UREOHP�
LQ�1HXURVFLHQFH

During visual perception, such features as form, 

color and stereopsis are represented in the brain by 

different neuronal assemblies. These features are 

combined into a coherent percept if presented to vi-

sion within a definite time window. If scattered over a 

wider window, the features are perceived and referred 

separately (Treisman & Gelade, 1980). The problem 

of identification of mechanisms enabling to combine 

different features into a single percept is known as 

features/events binding problem (Sougné, 2003). The 

binding mechanisms operate also in auditory, tactile 

and multimodal perception. It is believed that correct 

timing of neuronal firings in different brain areas is 

required for the binding to occur (Eckhorn, et al., 1988; 

Damasio, 1989a, 1989b; Engel, König, Kreiter, Gray, 

& Singer, 1991; Merzenich, Schreiner, Jenkins, & 

Wang, 1993; deCharms & Merzenich, 1996). In the 

above-cited papers, the binding is considered, which 

happens within large-scale neuronal assemblies. On 

the other hand, a primitive binding mechanism can be 

attributed to a single generic neuron.

*HQHULF�1HXURQ�ZLWK�0XOWL�
,PSXOVH�6WLPXODWLRQ

The binding neuron concept was derived from the 

Hodgkin and Huxley model (1)–(3) by applying the 

stimuli, which are similar to those received by a natu-

ral neuron in natural conditions. In order to character-

ize those stimuli, one should take into account that a 

single input impulse exerts very small excitation unable 

to trigger the neuron. A neuron like pyramidal cell has 

up to 30000 input places on its surface – the synapses 

(Megias, et al., 2001). Normally, several hundreds of 

input impulses are required to trigger a spike (Ander-

sen, Raastad, & Storm, 1990). Each input impulse 

causes a transient change in the membrane voltage. 

This transient may have different time course in dif-

ferent parts of neuron, but what matters is the time 

course in the spike triggering zone (Moore, Stockbridge, 

& Westerfield, 1983). The transient in the spike trig-

gering zone is known as unitary excitatory postsynap-

tic potential, EPSP. Denote as EPSP t( )  the time 

course of EPSP due to input impulse arrived at time 

T = � . Taking into account that input impulses arrive 

to neuron seemingly randomly dispersed in time 

(Abeles, 1982), the voltage transient due to arrival of 

.  impulses at moments t t tN1 2, , ...,  is as follows:

CompEPSP t EPSP t t
k

N

k
( ) ( ).= −

=

∑
1

 (5)

This is equivalent to receiving the stimulating cur-

rent I t
s
( )  of the following form:

I t C
d

dt
CompEPSP t

s M
( ) ( )= .  (6)

In order to have explicit expression for I t
s
( ) , one 

needs to know an explicit expression for the EPSP t( ) . 

The latter can be estimated with a closer consideration 

of what happens during synaptic transmission. Each 

excitatory impulse produces a short-time inward cur-

rent through membrane area under the corresponding 

synapse, excitatory postsynaptic current, ESC. The 

ESC time course is modeled with the so called 

α-function (Redman & Walmsley,1983) given as (see 

Figure 1):

ESC t f t Q t t( ) ( ) exp( ).= = −
α

α α2
 (7)

Here 1  is the total positive charge injected into 

neuron due to synaptic transmission of arrived impulse. 

This charge migrates along the membrane decreasing 

its voltage2. Before this charge reaches the spike trig-
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gering zone to produce the EPSP, it must pass through 

cylindrical structure known as dendrite. This allows 

one to apply the cable theory (Jack & Redman, 1971) 

and find the EPSP t( )  as:

EPSP t f t f d

t
M

( ) ( ) ( )

/

= − ,∫ δ

τ

α
θ θ θ

0

 (8)

where

f t
C t

X

t
t

M

δ

λ π

( ) exp= − −











,

1

2 4
1

2

 (9)

is the Hodgkin formula for the function of unit source 

in infinite cylindrical cable (Fatt & Katz, 1951). The 

time courses ESC t( )  and EPSP t( )  calculated by 

means of Equations (7)-(9) with parameter values 

known for cortical pyramidal neurons are presented in 

Figure 1. This completes definition of the stimulating 

current I t
s
( )  in the spike triggering zone caused by 

.  impulses with fixed arrival times t t tN1 2, , ..., . At 

first glance, t t tN1 2, , ...,  in natural conditions are dis-

tributed randomly. Different choices of t t tN1 2, , ...,  

bring about different I t
s
( )  which may or may not 

trigger the neuron (see Vidybida, 1996). Therefore, it 

is natural to ask: What is the probability to fire a spike 

with stimulus I t
s
( )  if arrival times t t tN1 2, , ...,  of cor-

responding input impulses are taken by chance from 

a temporal window [ ; ]07 ? Denote this probability 

as fp . For calculating fp  one can use the Monte 

Carlo method. Namely, chose randomly .  numbers 

t t tN1 2, , ...,  from the interval [ ; ]07 , substitute them 

into (5), find I t
s
( )  as in (6) and add it to the Equation 

(1).

By solving numerically the obtained set of H-H 

equations one can decide if stimulation composed of 

.  input impulses arriving at moments t t tN1 2, , ...,  is 

successful in generating spike, or not. The next trial 

should be performed with another set of .  random 

numbers from [ ; ]07 . After repeating this procedure 

many times, one can find the firing probability fp  by 

dividing the number of successful trials on the total 

number of trials made. This whole procedure can be 

performed with various values of 7 , which gives the 

dependence fpW( )  of the firing probability on the 

window width 7 . In order to estimate the role of 

inhibitory hyperpolarization on the course of fpW( ) , 
a term with additional constant potassium3 conductance, 

Figure 1. ESC(t), 1, and EPSP(t), 2, time courses. Notice the remarkable difference in the speed of two transients.
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− − /g V V C
iK K M
( ) , is added to the right hand side 

of (1). Several values of g
iK

 are considered, which 

bring about different values of inhibitory potential (see 

Figure 2).

The dependencies obtained (Vidybida, 1996, 1998) 

are given in Figure 2, where the fp  is presented as a 

function of temporal coherence instead of 7 . The 

temporal coherence between unitary EPSP within a 

compound stimulus is defined as TC W= /� .

7KH�&RQFHSW

The step-like dependencies with the step position 

depending on the inhibitory hyperpolarization allows 

one to propound the following abstract description 

of signal processing in a generic neuron (the binding 

neuron concept):

BN-1: Excitatory synaptic currents (ESCs, Figure 1) 

are treated as elementary events, which a neuron 

is able to perceive.

BN-2: EPSP, which follows the ESC serves as short 

term memory mechanism for the perceived 

elementary event, because its duration is much 

longer than that of the ESC (Figure 1).

BN-3: A set of elementary events, which are coherent 

in time, can be treated as a compound event. In 

the neuron, the elementary events from the set 

are bound into an output spike. The output spike 

can be treated as abstract representation of the 

compound event (Figure 3).

BN-4: Inhibition serves as controller of this type of 

binding: The level of inhibitory potential con-

trols the degree of temporal coherence between 

elementary events which is necessary for those 

events to be recognized in the neuron as coherent 

(bound) event (Figures 2 and 3).

Figure 2. Firing probability vs. temporal coherence between the unitary EPSPs within the compound stimulus of 

1000 input impulses. The four curves correspond consecutively from the left to the right to the inhibition potentials 

0.43, 3.08, 5.02, 6.30 mV .
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The BN concept described in BN-1 – BN-4, above, is 

derived from the dependencies in Figure 2. Since those 

dependencies are obtained based on the H-H equa-

tions, then the H-H equations could be one possible 

mathematical implementation. The LIF model could 

be another one since curves similar to those in Figure 

2 can be obtained based on the LIF model with proper 

chosen mechanism of inhibition.

A model, which represents the BN concept in refined 

form, the BN model, could be realized as follows 

(Vidybida, 1998, 2003). Each input impulse is stored 

in the BN for a fixed time, τ , after which it disappears. 

The τ  is similar to the tolerance interval discussed 

by MacKay (1962). The neuron fires an output impulse 

if the number of stored impulses, Σ , is equal or 

higher than the threshold value, N
th

, and Σ = �  just 

after firing. In this model, the presence of inhibition 

is expressed in the decreased τ  value.

A formalized definition of the BN model can be 

given in the form of transfer function. The transfer 

function allows exact calculation of output in terms 

of input. In the case of neuron, input is a increasing 

sequence of discrete arriving moments of standard 

impulses:

T l l l
in
= { , , , ...}

1 2 3
. 

The output is the sequence of discrete firing mo-

ments of BN:

T f f
out
= { , ,...}

1 2
. 

It is clear that T T
out in
⊂ . A transfer function in 

our case could be the function σ( )L , l T
in

∈ , which 

equals 1 if L  is the firing moment, l T
out

∈ , and 0 

otherwise. For BN with threshold N
th

 the required 

function can be defined as follows. It is clear that the 

first N
th
−�  input impulses are unable to trigger 

neuron, therefore

σ σ( ) , ..., ( )l l
N
th

1 1
0 0= =

−
. 

The next input impulse is able to trigger if and only 

if all first N
th

 arriving moments are confined within 

a time interval, which is no longer than τ :

σ τ( ) .l l l
N N
th th

= − ≤1
1

  if and only if   

Figure 3. Signal processing in a neuron in accordance with the BN concept
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In order to determine σ( )l
N k
th
+

, K ≥ � , one must 

take into account previous input moments, therefore 

we use notation σ
T
in

 instead of σ . The values of 

σ
T N k
in th

l( )
+

 can be determined recursively:

[ ( ) ]σ

τ

T N k

N k k

i

in th

th

l

l l

+

+ +

∈

=

− ≤

∀

1

1

  

  [   

  

if and only if

and
{{ ,..., }

[ ( ) ]].
k N k T i

th in

l
+ + −

=
1 1

0σ

 

The computational disadvantage of the BN model 

as compared to the LIF one is that the state of BN must 

include not only the degree of excitation, which is Σ , 

but also the time to live of any impulse stored. The 

advantage is that traces of any impulse obtained disap-

pear completely after finite time τ  (see Figure 4). 

This fact allows one to obtain exact mathematical results 

as regards to firing statistics (see Vidybida & Kravchuk, 

2010).

)8785(�5(6($5&+�',5(&7,216

The BN concept offers a relative freedom in choosing 

mathematical model of a generic neuron. Indeed, the 

concept can be readily implemented with a model 

neuron, which satisfies the following two conditions: 

(1) the model neuron must fire after receiving some 

threshold input, (2) it must be forgetful in a sense that 

influence of any input impulse decreases end eventu-

ally disappears in time. In the above proposed BN 

model, the forgetfulness is realized due to the box-like 

function chosen for the EPSP t( ) , in the H-H and 

LIF models – due to exponentially decaying EPSP t( )  

(see Figures 1 and 4).

There are many functions in between suitable to 

realize forgetfulness and being in compliance with the 

BN concept, e. g. min( ,( / ) )1 t p
τ
−

 with P > � , τ  

– const. Some of them could be more suitable then 

others for calculating some features of a neuron or 

neuronal network.

Relative simplicity of the BN model and its “dis-

creteness,” if considered with identical and unmodifi-

able synaptic weights, makes it attractive for hardware 

implementation. A step in this direction is made in 

Wang, Cohen, Stiefel, Hamilton, Tapson, and van 

Schaik (2013), where a network of 4K identical bind-

ing neurons with τ  = 1 ms, N
th

 = 3 is implemented 

on a Field-Programmable Gate Array (FPGA) chip. 

Further steps in the hardware implementation could 

be introducing modifiable synaptic weights and in-

hibitory connections in the network similarly to what 

is done in Vidybida (2003) at software level.

Figure 4. Response of the LIF, 1, and BN, 2 models to a single input impulse delivered at T = �  (surrogates for 

the EPSP t( ))
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At the level of network of BNs, it would be inter-

esting to test how the binding idea could be realized 

for more complicated stimuli than a single bunch of 

input impulses used above. A step in this direction is 

made in Vidybida (2003).

There is a technical demand for mechanisms like 

features/events binding. For example, in the audio-

visual tracking of moving objects, the binding in its 

very initial form is known as visual and/or audio-visual 

integration (see Talantzis, Pnevmatikakis, & Constan-

tinides, 2012). It would be interesting to test what the 

binding neuron concept could offer to this practical 

area. A step in this direction is made in Wrigley and 

Brown (2005).

&21&/86,21

The signal processing function of a neuron can be 

grasped if one considers stimuli similar to those a neu-

ron receives in natural conditions, namely, irregularly 

scattered in time sequences of impulses. For stimuli of 

this type, a neuron performs elementary events bind-

ing task – a bunch of impulses, which comes within 

narrow time window, triggers the neuron, and emit-

ted impulse can be treated as abstract representation 

of that bunch. A window width, which is suitable for 

triggering, can be efficiently controlled by the level 

of inhibition. The binding ability could be the reason 

for neuron-like cells to survive the natural selection 

in those early times when multi-neuronal assemblies 

were still to be invented.
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Action Potential: In the excitable membrane, an 

abrupt short-time change of the membrane voltage 

produced due to the membrane excitability. Can propa-

gate along neuronal fibers. Serves as interneuronal 

communication unit (neuronal impulse).

Axon: A long projection of a neuron through which 

spikes leave the neuron and course to other neurons or 
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muscles. At the end, has branching structure through 

which a single action potential produced in the neuron 

can be delivered to many synapses at different neurons. 

The strength of any action potential delivered through 

a branch is identical to that of initially generated spike 

due to active properties of excitable membrane all 

axons are made of.

Binding Problem: In neuroscience, the problem of 

how sensory elements in a scene organize into coherent 

perceived objects, or percepts. Has spatial aspect, when 

the elements to bind are scattered in space (mainly in 

visual perception) and temporal aspect, when the ele-

ments to bind are scattered in time (mainly in auditory 

and multimodal perception).

Membrane Voltage: See “Transmembrane Po-

tential.”

Neural Impulse: See “Action Potential.”

Spike: See “Action Potential.”

Synapse: Electrochemical construct at the end of 

neuronal fiber (axonal branch) of a neuron, attached 

to another neuron. The point, where interneuronal 

communication takes place.

Synaptic Current: Transmembrane current, gen-

erated under synapse when neuronal impulse arrives 

to that synapse.

Transmembrane Potential: The electric poten-

tial difference between internal and external sides of 

membrane.
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1  In this statement, we expect that synaptic strength 

is standard and unmodifiable.
2  Without stimulation, the inner side of membrane 

has negative electric potential with respect to the 

outer side.
3  Concentration of potassium ions is higher inside 

the cell. Due to additional potassium conduc-

tance, potassium ions have additional possibility 

to go out through the membrane. This makes the 

membrane inner side more negative. Created 

this way additional negative potential is known 

as inhibitory potential/hyperpolarization.


