Simulation of binding-releasing stochastic process

A.K.Vidybida*
Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

March 4, 2025

Abstract

Here we describe how the process of binding-releasing of odor molecules
with the set of ORs expressed in a single ORN is simulated in the program

1 Introduction

We characterize interaction of a single odor molecule (O1 or O2) with a single
OR by means of two rate constants:

ky — is the odor binding rate (denoted in the program as kp for both O1
and 02);

k_ — is the odor releasing rate (in the program: kmi1, or km2 for O1, or 0O2),

which, together with odor concentration c, govern the following association-
dissociation reaction:

k
O+R ké OR, (1)

where R denotes the OR protein and O is either O1, or O2.

Suppose an ORN has N ORs at its surface. If an odor O is presented, then
at any time ¢, n(t) is the number of ORs which are bound with O, and N —n(t)
are free. The physical meaning of ky, k_ is that ck, dt gives the probability
that a free OR becomes bound during a small interval dt, and k_ dt gives the
probability that a bound OR becomes free during the dt. Since the binding-
releasing process is driven by the Brownian motion, the number n(t) changes
randomly in time. In order to simulate with the time step d¢t ORN’s activity in
the odor presence, we need a realization (one of many possible) of the stochastic
process:

{no,n1,...,nk,...}, (2)

*http://vidybida.kiev.ua/

where ng = n(kdt). (In the program, the instant value of n at any time step is
denoted as n1, or n2 for odor O1, or 02, respectfully).

For small N, transition from nj to ng41 might be performed by calculating
what happens with each OR during dt. To determine if a bound OR remains
bound, produce a random number r from a uniform distribution in the interval
[0;1). If < pm, where

pm =k_dt, (in the program: pm1, or pm2 for O1, or O2) (3)

then that OR becomes free, otherwise it remains bound. Similarly, for a free
OR compare r with pp, where

pp = cky dt, (in the program: pp, for both O1 and 02). (4)

If » < pp then that OR becomes bound, otherwise it remains free. Do this for
all ng bound and N — ny, free ORs and then calculate 144 1.

Unfortunately, the number of ORs per ORN can be larger than 10°, [1].
Necessity to generate that much random numbers for each time step dt makes
unfeasible a long simulation in a PC. But we need long simulations for several
reasons. First, there are many (5000 - 10000) ORNs expressing the same OR
protein, [2]. Repeating the same numerical experiment with different seeds
will emulate a collective response in the set of ORNs expressing the same OR.
Second, this simulation is of statistical nature and, to be reliable, it needs many
repetitions with different seeds initializing the random number generators used.

2 Fast algorithm, theory

The sequence (2) is a realization of a Markov chain. Any realization of Markov
chain can be produced with the help of its transition matrix:

pi,j:p(j|i); ’L'Z(),...,N, j:O,,N (5)

In our case, p(j |) gives the probability to have j bound ORs at a time step,
provided that at the previous time step there were i bound ORs. It is clear that

N
pr.:l for any i =0,...,N.

j=0
In order to use p; ; for generating a realization (2), calculate a new matrix P; ;
by the following way:
J
Pi,jzzpi,ju i=0,...,N, j=-1,0,...,N. (6)
=0

A raw #i in the matrix P; ; has the following form:

{0, pi,os Pi,o + Pi1s Pio +Pi1 +Di2s -. -, 1}

Now, to produce ny; following a given ny in (2), produce a random number r
from a uniform distribution in the interval [0;1), take the raw #ny, in the P ;,
find such j that

Popj <r < Ppyjir, (7)
and put
Ngy1 =7 + 1.

The matrix P; ; is the same at any time step, and should be calculated in
advance, before starting generation of realization (2). This can be done by the
following way. First, considering binding-releasing events at different ORs as
statistically independent, we calculate the transition matrix (5) as follows:

min(N —1,j)

pij= > BNkp(i,f+i—jpm)BNkp(N —i,[,pp), (8)
f=max(0,j—1)

where f — is the number of ORs changing state from free to bound during dt,
and (f + 4 — j) — is the number of ORs changing state from bound to free
during dt, and

N
BNkp(N, k,p) = (k)pm =)V k=011, (9)

denotes a single term in a binomial distribution. Now, the required matrix P; ;
can be calculated as it is shown in (6).

3 Fast algorithm, implementation

3.1 Starting from the mean

The mean in time number of bound ORs (either nMEAN1, or nMEAN2 in the
program) can be found as follows:

nMEAN = px*N,

where p (in the program: pi1, or p2 for Ol and O2, respectfully) — is the
probability to find any OR bound (in equilibrium occupancy, see sec. 3.4):

p = Nxkpxc/(kp*c + km) (10)

(in the program (files initl.cpp and init2.cpp), km is either km1, or km2 for
O1 and O2, respectfully). If we start simulation from n0 = nMEAN, then it is
natural expecting that, for a long time (for the simulation time), the trajectory
(2) will be confined in a some range [nMIN; nMAX] around the nMEAN, and not
spanning all the possible for n values {0,1,2,..., N}. We choose (in the files
initl.cpp and init2.cpp)

nMIN = 0,
nMAX = nMEAN + nsig*sigma,

where the tunable parameter nsig is chosen in file init.cpp, and o is the
standard deviation for binomial distribution:

o= +/Np(l—p),

which is calculated as sigma in files initl.cpp, init2.cpp for O1 and O2,
respectfully.

In the program, at each time step of the simulation it is checked that n
€ [nMIN; nMAX]. Each case of violation of the last condition is reported in the
calling terminal and is written to the report file *.rep. The values nMEAN, nMIN
and nMAX are as well written to the report file for each of the two odors. For
parameter values inspired by biological data it appeared that the number of
possible n values within [nMIN;nMAX] is rather small compared with the total
number N of ORs per ORN. This allows to reduce dimensions of matrices in
(5) and (6), which, while drastically reducing the amount of necessary RAM,
also makes the search task in (7) undemanding.

Actually, it is only necessary that initial value for n is chosen from the
interval [nMIN;nMAX], and to control that it remains there in the process of
simulation. In the preliminary publication [3], we chose nsig = 9 (in the file
init.cpp). For this large value of nsig, 0 € [nMIN;nMAX], and we chose n =0
at the beginning of each sniff in the simulation. Also, we chose nMIN = 0 in the
files init1.cpp and init2.cpp while calculating for [3].

3.2 Calculating matrix P, ;

For calculating the matrix P; ; we need the transition matrix, which can be
calculated as it is shown in (8). Due to what is said in the Sec. 3.1, we need
only a limited range of values for ¢, j in (8). This dictates the ranges for indices
in the binomial terms used in the right hand side of (8). The first factor in (8)
should be known for the indices

i = nMIN,nMIN+1,...,nMAX, (f+i-j) = 0,1,...,nMAX.
The second factor in (8) should be known for the indices

(N-i) = N-nMAX,...,N-nMIN, £ = 0,1,...,nMAX.

3.2.1 Calculating necessary binomial terms

Firstly, we calculate those factors for the required ranges of indices. This is
done in the files make_BNkp_tabs1.cpp, make_BNkp_tabs2.cpp.

Two tables are calculated for each odor. Each element in the 2D array
BNkp_pm1[ni] [k] defined in the file make_BNkp_tabsl.cpp and representing
the first table gives the probability that exactly k ORs become free from ni+nMIN

bound' during dt:

i+nMIN .
BNkp_pml [ni] [k] = <n1 ; >pm1k(1—pm1)n1+nm“‘k,
ni=0,...,nMAX-nMIN, k=0,...,nMAX, (11)

where pm1 is defined in the file init1.cpp for the odor O1, and similarly for the
second odor.

Each element in the 2D array BNkp_pp1[i] [k] defined in the file
make_BNkp_tabsl.cpp and representing the second table gives the probability
that k ORs will become bound from i+N-nMAX free? during dt:

i+N-nMAX —
BNkp_pp1[i] [k] = < . >pp1k(1_pp1)1+N k-
Zi.=07 e ,HMAX_IIMIN, k:o’ L ,IIMAX7 (12)

where ppl is defined as pp in the file init.cpp and used both in initl.cpp
and init2.cpp. All four arrays (two for each odor) are saved in the directory
.probTabs and used in further runs if possible.

3.2.2 Calculating P; ;

The matrix P; ; is presented in the files make_fr_tabs1.cpp,
make_fr_tabs2.cpp by 2D arrays fri[diml] [diml1], where diml =

nMAX1-nMIN1 + 1 and similarly for the odor O2. We do not use in the program
the case j = —1, which is shown in the Eq. (6) for explanation only.

As it was mentioned above, we suppose that, in the time course, the pos-
sible/expected number of bound ORs falls into the interval [nMIN;nMAX] and
check during simulation whether this restriction holds when the stochastic dy-
namics unfolds. In this case, in order to benefit from the restriction, we have to
change the exact meaning of some elements in the fr1[dim1] [dim1]. Namely,
element fr1[ni] [0] gives the probability that starting from n=ni+nMIN the next
number nn of bound ORs belongs to the interval [0;nMIN]. This probability
is extremely small. In order not to deal with vanishing probabilities we intro-
duce a tunable parameter® epsil in the file init.cpp . If fr1[ni] [0] < epsil
then we put fr1[ni] [0] = 0. The same is with the next elements fr1[ni] [1],
fri[ni] [2], ...until an element appears, which exceeds epsil. Also, if for
some nni fri[ni] [nni] > 1— epsil, then we put fr1[ni] [nni] = 1, and the
same for all that follows nni up to dim1. This is justified since we check that
the trajectory stays inside the interval [nMIN;nMAX] during simulation.

When function make_fr_tabs1() finishes, array’s element fri[ni] [nni], if
equal neither 0 nor 1, gives the probability that the number of bound ORs is

IHere, the number of bound ORs n = ni + nMIN.
2Here, the number of bound ORs n = nMAX - i.
3In this version we put epsil = 0, therefore the machine rounding does the job.

less or equal nni + nMIN after passing a dt time step provided it was ni + nMIN
before the dt. As a result, each row fr1[ni] [1 has the following form:

{0,0,...,0,a,b,...,2,1,...,1,1}, (13)

where 0 < a < b < -+ < z < 1. The number of zeros and ones may vary
from zero to several*. In the process of calculation we also create an array
nlrl[dim1] [2], where nlr[n] [0] and nlr[n][1] indicate position of the a
and z, above (in the row #n). This is used further in the search task (7).

3.3 Finding the next n (nn)

In the file get_boundl.cpp we generate a random number rn from a uniform
distribution over [0;1) and, having the current number n of bound ORs, decide
which be the number of bound ORs, nn, at the next time step. For this purpose
it is necessary to find the right place for rn within the row fri[n-nMIN] []
exemplified in (13). This is done in the file get_placel.cpp in the following
manner. If a < rn < z then we do the standard search as required in (7). In
highly improbable cases when either rn < a or rn > z we put either nn=nMIN or
nn=nMAX, respectfully, and report the total number of such unlucky cases in the
report file and in the calling terminal. For the parameters chosen here (mainly,
nsig = 9) we have not observed the unlucky cases at all.

Proceeding as described above, we generate the entire stochastic trajectory
(2) for both O1 and O2 during the time interval sniffDur, which is specified in
the file DATA.RUN.

3.4 Checking the binomial distribution

In the file get_boundl.cpp, a vector type container distribl accumulates data
about occurrences of each number n of bound receptors. When the trajectory
is through, distribl[ni] gives the number of time steps at which the num-
ber of bound ORs was exactly n = ni + nMIN, and similarly for the second
odor. Having the distribl complete, we check whether the set of numbers
distribl[ni] complies with the binomial distribution with parameters N, p,
where p is given in (10). The check is made by calling check_binomiall()
in the file run_trajecl.cpp, and similarly for O2. In this version, the call is
commented out. Uncomment it for doing the check.

It should be taken into account that even for a very long simulation, cases of
the n being close to nMIN or nMAX are extremely rare. Their probability cannot
be reliably determined in a numerical experiment. Therefore, we exclude those
cases from the check. For this purpose, a parameter tolera = 0.1 is introduced
in the init.cpp. Cases having a total probability, that is calculated with a true
binomial distribution, less than tolera are excluded from testing.

4Uncomment the ‘¢//#define type_fr’’ line in the file type_in terminal.h to see an
example of raws in the fr[][].

References

1 K-E Kaissling. Olfactory perireceptor and receptor events in moths: A kinetic
model. Chemical Senses, 26:125-150, 2001.

2 K. J. Ressler, S. L. Sullivan, and L. B. Buck. Information coding in the
olfactory system: evidence for a stereotyped and highly organized epitope
map in the olfactory bulb. Cell, 79:1245-1255, 1994.

3 A. Vidybida. Selectivity gain in olfactory receptor neuron at optimal odor
concentration. In 2024 IEEFE International Symposium on Olfaction and FElec-
tronic Nose (ISOEN), pages 1-3, 2024.

	Introduction
	Fast algorithm, theory
	Fast algorithm, implementation
	Starting from the mean
	Calculating matrix Pi,j
	Calculating necessary binomial terms
	Calculating Pi,j

	Finding the next n
	Checking the binomial distribution

