
Logic of the “Stochastic ORN” model / program

A.K.Vidybida∗

Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

February 24, 2025

Abstract

Here we describe the statement of the problem for estimating how
much the ORN’s selectivity could be better, due to fluctuations in the
number of odor receptor proteins bound with odor, than that of OR pro-
teins it is populated with. Also, we sketch how the solution is organized
programmatically. More details can be found in other two documents in
this directory and comments in the code files.

1 Introduction

Theoretical estimates for an extremely simplified model of ORN suggest that
selectivity S of an ORN could possibly be considerably better than the selec-
tivity s of the OR proteins populating the ORN’s membrane, see e.g. [1]. This
model / program is developed for checking such a possibility for a more re-
alistic model of ORN. This more realistic model is described in the document
diffEq_on_dt.pdf in this directory. See also [2] for preliminary results obtained
in the framework of this model.

In order to compare S with s we give exact definitions of the both, and
express the selectivity gain g as

g =
S

s
. (1)

In order to find S with s given we model the odor binding-releasing process as
a Markov stochastic process, and perform numerical simulation of the ORN’s
response to it as it is described below, and in the diffEq_on_dt.pdf document
in this directory.

∗http://vidybida.kiev.ua/

1



2 The logics

2.1 Statement of the problem

Consider two hypothetical odors O1 and O2 which are presented to a hypothet-
ical ORN in two separate experiments at the same concentration c. For the c we
use here a fixed value, which, in a sense described in [2], may be considered as
optimal for having a selectivity gain. The odors have slightly different affinity
with the ORN’s OR proteins due to different rate constants in the following
association-dissociation reaction:

O + R
k+
⇀↽
k−

O R , (2)

where R denotes the OR protein and O is either O1, or O2.
We express the response of OR proteins to an odor as mean in time fraction

p of OR proteins bound with either analyte1:

p =
1

1 + K/c
, (3)

where K — is the dissociation constant:

K =
k−

k+
. (4)

By having the fractions p1 for O1 and p2 for O2 we calculate the OR discrim-
inating ability (selectivity) between O1 and O2 at concentration c as follows:

s =
p1 − p2

p1
, (5)

assuming that p1 > p2.
For an ORN equipped with those OR proteins we define selectivity S as

follows:

S =
F1 − F2

F1
, (6)

where F is the ORN’s mean firing rate when exposed to either O1 or O2. By
having both s and S we calculate the selectivity gain as shown in (1).

2.2 Realization in the program

The program is called from command line as ‘./stochORN s seed’. It reads
data from the DATA.* files in the data/ directory, initializes itself and makes
calculations. After the run is finished, a detailed report about the run is put as
*.rep in the reports/ directory.

1we use hear “odor’ and ‘analyte’ as synonyms.

2



2.2.1 The two odors

The program stochORN obtains the OR selectivity s as its command line argu-
ment. The O1 parameters are taken from the DATA.OR file. And O2 parameters
are chosen / calculated during initiation of the run, in such a way that the OR
proteins indeed have the selectivity s between O1 and O2. Namely the pro-
gram reads the rate constants k+ and k− for the odor O1 from the DATA.OR

file. The second odor, O2, is assumed to have association rate constant k+ the
same as does O1. The dissociation rate constant for O2, k−2, is calculated in
the init2.cpp file as:

k−2 =
s · k+ · c + k−

1 − s
. (7)

Now we have two odors with the rate constants given in the Table 1. By

odors assoc. rate const., 1/(msec · M) dissoc. rate const., 1/msec
O1 k+ k−

(read from the DATA.OR) (read from the DATA.OR)

O2 k+ (s · k+ · c + k−)/(1 − s)
(read from the DATA.OR) (calculated in the init2.cpp)

Table 1: Rate constants ensuring OR’s selectivity s.

substituting rate constants from the Table 1 in the Eqs. (3), (4) and (5) it can
be checked that indeed the OR’s selectivity between O1 and O2 equals s exactly.

The program utilizes this idea as follows. When execution starts, it reads
concrete numerical values for k+ and k− from the file DATA.OR and for concentra-
tion c — from the DATA.RUN. The desired trial OR’s selectivity s is supplied by
user as the first command line argument. Code in the init2.cpp file calculates
k−2 (denoted there as km2) in accordance with Eq. (7).

When initialization is finished, we have two pairs of rate constant values,
for O1 and O2, such that, at concentration c, OR proteins have selectivity s
between O1 and O2.

2.2.2 The two trajectories and ORN selectivity

Having concrete values for the association-dissociating rate constants for both
O1 and O2, and concentration c, we calculate n(t), which is how many OR
proteins are bound with odor at a moment t. The moments considered have
the form k · dt, k = 1, 2, . . . , where dt is the simulation time-step value read
from the DATA.RUN file when the program starts. The trajectories are cal-
culated in the files run_trajec1.cpp, run_trajec2.cpp for each odor. The
algorithm used for calculating n(t) is described in details in the document
stoch_proc_simulation.pdf in this directory. Simultaneously, the membrane
voltage, V (t) is calculated as described in the diffEq_on_dt.pdf document in
this directory. Every time when V (t) exceeds the firing threshold value (read

3



from the DATA.ORN file) the program registers a spike, resets V (t) to its resting
value (read from the DATA.ORN file), but keeps n(t) as is.

The above calculations are performed in parallel both for O1 and O2 in the
parent and child processes created in the main.cpp file.

When simulation of the stochastic processes n1(t) and n2(t) is finished, we
have, both for O1 and O2, the total number of spikes, fire1 and fire2, pro-
duced during the trajectory duration. The selectivity of the ORN is then cal-
culated as

S = (fire1 - fire2) / fire1 (8)

in the done.cpp file, where it is also used to calculate the selectivity gain in
accordance with the Eq. (1).

2.2.3 Multiple sniffs / ORNs in a single trajectory

In this version of the program, a single trajectory consists of many consecutive
sniffs. The sniff duration is read from the file DATA.RUN as sniffDur parameter.
The number of sniffs is read from the file DATA.RUN as nORN parameter.

The purpose of this approach might be considered as an attempt to gather
sufficient amount of statistics about a single ORN. We would prefer another
interpretation: It is known, [3], that the number of ORNs expressing the same
OR protein can be quite large (5000-10000) in the primary part of olfactory
system. All these ORNs converge onto a single (or few) glomerulus and construct
input for a single (or few) projection neuron. By using in the definition (8)
the number of spikes fire1 and fire2, produced in the course of the whole
trajectory we gather a single sniff statistics for the set of these neurons. This
explains the notation nORN.

2.2.4 Random number generation scheme used

The stochastic trajectories n1(t), n2(t) are produced as Markov processes with
the help of pseudo-random number generators (RNG). The algorithm used is
described in the document stoch_proc_simulation.pdf in this directory. We
use a pair of the system RNG lrand48() in the parent and child processes
and a pair of RNG from the GNU scientific library, [4]. The first system RNG
is initialized in the init1.cpp file with a seed seed supplied as the second
command line parameter when the program is called. It is used for the O1 odor.
The second system RNG is initialized in the init2.cpp file with a mangled seed:
seed2 = seed*1.3. Pseudo-random numbers obtained from the system RNGs
are used for initialization of the GNU scientific library RNGs at the beginning
of each sniff, see files reset1.cpp and reset2.cpp. It is the GNU scientific
library RNGs which are used to produce the n1(t), n2(t) during each sniff. In
the paper [2], it is wrongly stated that the GNU RNGs are reset only once,
before the first sniff. Actually, they were initialized with fresh random numbers
obtained from the pair of system generators lrand48() before each sniff.

4



References

1 A. Vidybida. Harnessing thermal fluctuations for selectivity gain. In 2022
IEEE International Symposium on Olfaction and Electronic Nose (ISOEN),
pages 1–3, 2022, see doc/papers/Aveiro2022.pdf

2 A. Vidybida. Selectivity gain in olfactory receptor neuron at optimal odor
concentration. In 2024 IEEE International Symposium on Olfaction and Elec-
tronic Nose (ISOEN), pages 1–3, 2024, see doc/papers/Grapevine2024.pdf

3 K. J. Ressler, S. L. Sullivan, and L. B. Buck. Information coding in the
olfactory system: evidence for a stereotyped and highly organized epitope
map in the olfactory bulb. Cell, 79:1245–1255, 1994.

4 M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P Alken, M. Booth,
F. Rossi, and R. Ulerich. GNU Scientific Library Reference Manual. 2019.

5


	Introduction
	The logics
	Statement of the problem
	Realization in the program
	The two odors
	The two trajectories and ORN selectivity
	Multiple sniffs / ORNs in a single trajectory
	Random number generation scheme used



